1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
10

Which is not a characteristic of a compound? Different samples have different properties Can be represented by a chemical formul

a. Has different properties from its compound elements or a pure substance made of two or more elements
Physics
1 answer:
Helga [31]3 years ago
8 0

Out of all given choices, “Different samples have different properties” is not a characteristic of a compound

Answer: Option A

<u>Explanation: </u>

A substance which comprises of more than one element chemically linked together at a fixed weight ratio usually referred as compound. The relationship arises due to the result of the chemical reactions between the components of the elements.

The property of the compound vary from the property of its elements to which it gets formed. For example: Water (H_{2} O) is a combination of two elements, hydrogen and oxygen, chemically bonded in a constant 1: 8 weight ratio .

You might be interested in
Which is the best explanation of how the Moon formed?
andreev551 [17]
The incorrect answer is C
4 0
3 years ago
Read 2 more answers
Which of the following statements is true?
rosijanka [135]
The correct answers would be B, and d
3 0
3 years ago
Read 2 more answers
Suppose that the dipole moment associated with an iron atom of an iron bar is 2.8 × 10-23 J/T. Assume that all the atoms in the
masya89 [10]

To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.

The diple moment associated with an iron bar is given by,

\mu = \alpha *N

Where,

\alpha = Dipole momento associated with an Atom

N = Number of atoms

\alpha y previously given in the problem and its value is 2.8*10^{-23}J/T

L = 5.8cm = 5.8*10^{-2}m

A = 1.5cm^2 = 1.5*10^{-4}m^2

The number of the atoms N, can be calculated as,

N = \frac{\rho AL}{M_{mass}}*A_n

Where

\rho = Density

M_{mass} = Molar Mass

A = Area

L = Length

A_n =Avogadro number

N = \frac{(7.9g/cm^3)(1.5cm)(5.8cm^2)}{55.9g/mol}(6.022*10^{23}atoms/mol)

N = 7.4041*10^{23}atoms

Then applying the equation about the dipole moment associated with an iron bar we have,

\mu = \alpha *N

\mu = (2.8*10^{-23})*(7.4041*10^{23})

\mu = 20.72Am^2

PART B) With the dipole moment we can now calculate the Torque in the system, which is

\tau = \mu B sin(90)

\tau = (20.72)(2.2)

\tau = 45.584N.m

<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>

3 0
3 years ago
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side
pishuonlain [190]

Answer:

See the explanation

Explanation:

Given:

Distance of Firecrackers A and B = 600 m

Event 1 = firecracker 1 explodes

Event 2 = firecracker 2 explodes

Distance of lab partner from cracker A = 300 m

You observe the explosions at the same time

to find:

does event 1 occur before, after, or at the same time as event 2?

Solution:

Since the lab partner is at 300 m distance from the firecracker A and Firecrackers A and B are 600 m apart

So the distance of fire cracker B from the lab partner is:

600 m  + 300 m = 900 m

It takes longer for the light from the more distant firecracker to reach so

Let T1 represents the time taken for light from firecracker A to reach lab partner

T1 = 300/c

It is 300 because lab partner is 300 m on other side of firecracker A

Let T2 represents the time taken for light from firecracker B to reach lab partner

T2 = 900/c

It is 900 because lab partner is 900 m on other side of firecracker B

T2 = T1

900 = 300

900 = 3(300)

T2 = 3(T1)

Hence lab partner observes the explosion of the firecracker A before the explosion of firecracker B.

Since event 1 = firecracker 1 explodes and event 2 = firecracker 2 explodes

So this concludes that lab partner sees event 1 occur first and lab partner is smart enough to correct for the travel time of light and conclude that the events occur at the same time.

8 0
3 years ago
Other questions:
  • _____ varies with the gravitational force. Plz help. Due tomorrow.
    13·2 answers
  • (a) What is the energy stored in the 10.0 μF capacitor of a heart defibrillator charged to 9.00×103V ? (b) Find the amount of st
    10·1 answer
  • Need help with science questions!
    8·1 answer
  • The small increase in global oil production coupled with an increased demand for those resources leads to _______.
    15·2 answers
  • Stan's car starts from rest and accelerates to a speed of 25 m/sec in 10 seconds. What is the acceleration? *
    12·1 answer
  • A chain 72 meters long whose mass is 29 kilograms is hanging over the edge of a tall building and does not touch the ground. How
    6·1 answer
  • In Fig. on the right, what is the acceleration at 1.0 s?
    8·2 answers
  • The region where a magnet force is strongest is at the​
    7·2 answers
  • List between six and eight student organizations either offered by your school or offered
    15·1 answer
  • Q: Explain the shape of the I-V graph of the filament lamp?<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!