C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly
The basic definition of pressure is force/area and the scientific community defined that as the Pascal (Pa).
Answer: Wave speed may equal frequency*wavelength. Yet doubling the frequency only halves the wavelength; wave speed remains the same. To change the wave speed, the medium would have to be changed. 24. What are some simple steps I can take to protect my privacy online? Many people ... So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. 3.8k views ... The period of a note is 0.3 seconds and the speed of sound in air is 340 m/s. So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. What is the period of a wave if the wavelength is 100m and the speed is 200 m/s? ... If you move towards a light source, the wavelength decreases.
Explanation:
Like charges repel, unlike charges attract
Two protons will also tend to repel each other because they both have a positive charge. On the other hand, electrons and protons will be attracted to each other because of their unlike charges.
So I would say no, unless the two bodies are placed close to each other where one has much more charge than the other, then due to induction, force of attraction becomes more than the force of repulsion.
Kepler's laws were enunciated to model in a mathematical way the movement of the planets in their respective orbits around the Sun.
There are three laws of Kepler.
In particular, Kepler's first law states the following:
"All the planets move around the Sun describing elliptical orbits, the Sun is in one of the foci of the ellipse."
Answer:
Kepler's 1st law of planetary motion states that the planets have an elliptical orbit, with the Sun at one focal point of the ellipse.
a. 1st law