Answer:
I believe that the answer is d.
Explanation:
Because there is nothing to make the aircraft accelerate or decelerate, it is going to stay in constant motion with no acceleration.
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A
Answer:
<em>The magnitude of vector d is 16 and the angle with the x-axis is 270°</em>
Explanation:
<u>Operations With Vectors</u>
Given two vectors in rectangular components:

The sum of the vectors is:

The difference between the vectors is:

The magnitude of
is:

The angle
makes with the horizontal positive direction is:

The question provides the vectors:



Calculate:

The magnitude of
is:

The angle is calculated by:

The division cannot be calculated because the denominator is zero. We need to estimate the correct angle by looking at the components of the vector. Since the x-coordinate is zero and the y-coordinate is negative, the vector points downwards (south), thus the angle must be -90° or 270° if the range goes from 0° to 360°.
The magnitude of vector d is 16 and the angle with the x-axis is 270°
Kinetic energy<span>is the </span>energy<span> of body or a system with respect to the motion of the body or of the particles in the system. </span>Potential energy<span> is the stored </span>energy<span> in an object of system because of its position or configuration.</span>
Answer:
He is warmed up now
Explanation:
His muscles are better and stretched now