28 7/8, write 875/1000 and keep dividing by 5 to get the simplest form
Answer:
C. (x-8)^2 = 52 is the correct answer.
Step-by-step explanation:
6.) 9
5(9)+18=63
Divide 9+13x (since its the entire line) by 2 to get 4.5+6.5x so it can equal Half
4.5+6.6(9)=63
7.) IF=HF
The three lines indicate they are equal to eachother
Hope that helps!
The answer is c) <span>60 + 18 = 6(10 + 3) </span>

<u>the </u><u>given </u><u>figure </u><u>is </u><u>a </u><u>composition</u><u> </u><u>of </u><u>a </u><u>rectangle</u><u> </u><u>as </u><u>well </u><u>as </u><u>a </u><u>right </u><u>angled </u><u>triangle </u><u>!</u>
<u>we've</u><u> </u><u>been </u><u>given </u><u>the </u><u>two </u><u>sides </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>we're</u><u> </u><u>required</u><u> </u><u>to </u><u>find </u><u>out </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>,</u><u> </u><u>so </u><u>as </u><u>to </u><u>find </u><u>it's</u><u> </u><u>area </u><u>~</u>
<u>we </u><u>know </u><u>the </u><u>the </u><u>opposite</u><u> </u><u>sides </u><u>of </u><u>a </u><u>rectangle </u><u>are </u><u>equal</u><u> </u><u>,</u><u> </u><u>therefore </u><u>we </u><u>can </u><u>break </u><u>the </u><u>longest </u><u>side </u><u>(</u><u> </u><u>length </u><u>=</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>cm </u><u>)</u><u> </u><u>into </u><u>two </u><u>parts </u><u>!</u><u> </u><u>the </u><u>first </u><u>part </u><u>of </u><u>length </u><u>=</u><u> </u><u>7</u><u> </u><u>cm </u><u>which </u><u>is </u><u>the </u><u>length </u><u>of </u><u>the </u><u>rectangle </u><u>and </u><u>the </u><u>rest </u><u>2</u><u>.</u><u>5</u><u> </u><u>cm </u><u>(</u><u> </u><u>9</u><u>.</u><u>5</u><u> </u><u>-</u><u> </u><u>7</u><u> </u><u>=</u><u> </u><u>2</u><u>.</u><u>5</u><u> </u><u>)</u><u> </u><u>will </u><u>become </u><u>the </u><u>height </u><u>of </u><u>the </u><u>triangle </u><u>!</u>
<h3><u>For </u><u>perimeter</u><u> </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

now ,
<u>perimeter</u><u> </u><u>of </u><u>rectangle </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>l </u><u>+</u><u> </u><u>b </u><u>)</u>
where ,
<u>l </u><u>=</u><u> </u><u>length </u>
<u>b </u><u>=</u><u> </u><u>breadth </u>

and ,

<u>Perimeter</u><u> </u><u>of </u><u>figure </u><u>in </u><u>total </u><u>=</u><u> </u><u>2</u><u>6</u><u> </u><u>cm </u><u>+</u><u> </u><u>1</u><u>5</u><u> </u><u>cm</u>
thus ,

<h3><u>For </u><u>area </u><u>of </u><u>the </u><u>figure </u><u>-</u></h3>

now ,
<u>area </u><u>of </u><u>rectangle</u><u> </u><u>=</u><u> </u><u>l </u><u>×</u><u> </u><u>b</u>
where ,
<u>l </u><u>=</u><u> </u><u>length </u>
<u>b </u><u>=</u><u> </u><u>breadth</u>

and ,

<u>Area </u><u>of </u><u>figure</u><u> </u><u>in </u><u>total </u><u>=</u><u> </u><u>4</u><u>2</u><u> </u><u>cm²</u><u> </u><u>+</u><u> </u><u>7</u><u>.</u><u>5</u><u> </u><u>cm²</u>
thus ,

hope helpful :)