Answer:
Explanation:
Molar mass of As2S3= {75(2) + 32(3)}
= 150 + 96 = 246g/mol
Amount = 3.25mole
And
Amount = mass/ molar mass
mass = amount × molar mass
Mass = 3.25 × 246
mass = 799.5g
Answer:
The correct answer is - 2770000 cm.
Explanation:
1 kilometer = 1000 meter
1 meter = 100 centimeter
1 kilometer = 100*1000 cm
1 km = 100000 cm.
then,
27.7 kilometers = 2.77 × 10^6 centimeters
So, 27.7 kilometers = 27.7 × 100000
= 2.77 × 106 or 2770000 centimeters.
The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
identify the atoms on each side
count the atoms on its side
use coefficients to increase the atoms on each side
check to make sure you have the same number of each type of atom on each side