Answer:
10 atm.
Explanation:
Using the combined gas law equation as follows;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 5 atm
P2 = ?
V1 = 4L
V2 = 2L
T1 = 25°C = 25 + 273 = 298K
T2 = 25°C = 298K
Using P1V1/T1 = P2V2/T2
5 × 4/298 = P2 × 2/298
20/298 = 2P2/298
Cross multiply
298 × 20 = 298 × 2P2
5960 = 596P2
P2 = 5960 ÷ 596
P2 = 10 atm.
Answer:
Percentage dissociated = 0.41%
Explanation:
The chemical equation for the reaction is:

The ICE table is then shown as:

Initial (M) 1.8 0 0
Change (M) - x + x + x
Equilibrium (M) (1.8 -x) x x
![K_a = \frac{[C_3H_6ClCO^-_2][H^+]}{[C_3H_6ClCO_2H]}](https://tex.z-dn.net/?f=K_a%20%20%3D%20%5Cfrac%7B%5BC_3H_6ClCO%5E-_2%5D%5BH%5E%2B%5D%7D%7B%5BC_3H_6ClCO_2H%5D%7D)
where ;


Since the value for
is infinitesimally small; then 1.8 - x ≅ 1.8
Then;




Dissociated form of 4-chlorobutanoic acid = 
Percentage dissociated = 
Percentage dissociated = 
Percentage dissociated = 0.4096
Percentage dissociated = 0.41% (to two significant digits)
Answer:
They would produce a repulsive force to another
Explanation:
A positive particle approaching another positive particle will repulse it.
According to coulomb's law "like charges repel one another and unlike charges attract".
A charge is an intrinsic property of any matter.
When like charges e.g positive and positive or negative and negative charges are in the vicinity of one another, they repel each other.
When unlike charges; positive and negative are brought together, they simply attract one another.
Therefore, we expect that a positive particle approaching another positive particle will repel one another.