Answer:
5.25 moles.
Explanation:
The decomposition reaction of NaN₃ is as follows :

We need to find how many grams of N₂ produced in the process.
From the above balanced chemical reaction, we conclude that the ratio of moles of sodium azide and nitrogen gas are 2 : 3.
2 moles of sodium azide decomposes to give 3 moles of nitrogen gas. So,
3.5 moles of sodium azide decomposes to give
moles of nitrogen gas.
Hence, the number of moles produced is 5.25 moles.
H2O2(I)
C6H6(O)
CO2(I)
C2H6(O)
HNO3(I)
Answer:
<h2>Actin and myosin.</h2>
Explanation:
The cells that allow your bones to move, the movement of thick (myosin) and thin (actin) filaments during contraction
.
During a contraction thick and thin filaments do not shorten but increase their overlap of each other.
Thin filaments slide past thick filaments extending more deeply into the A band.
The I bands and H bands decrease in lenght as Z discs are come closer together
.
Sarcomere represents area between two Z disc, so the sarcomere gets smaller during a contraction
.
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Use PV =nRT
so P = nRT/V
= 1 mole(0.08205 L atm/K mol)(1000K) / 2 L
= 41 atm