I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
La velocidad correcta de la luz en el vacío es 300.000 km/s .
La distancia = (velocidad) x (duración de tiempo)
Duración de tiempo = 494 segundos, porque cada minuto = 60 segundos
La distancia = (300.000 km/s) x (494 s)
<em>La distancia = 148.200.000 km</em>
The correct answer is The electromagnetic waves appear more in red color.
<span>Since red is at the low-frequency end of the visible spectrum, we say that light from a receding star is shifted toward red, or redshifted.</span>
Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.