Answer:
Value of angle between vector a and b is
.
Explanation:
Vectors a and b have scalar product 6.00
Let
be the angle between a and b.

ab cos
= 6 ...(1)
Vectors a and b have magnitude of vector product 9.00

ab sin
= 9 ...(2)
Dividing equation (2) by (1) we get

tan
= 1.5

= 
Thus, value of angle between vector a and b is
.
Answer:
a) n2 = 1.55
b) 408.25 nm
c) 4.74*10^14 Hz
d) 1.93*10^8 m/s
Explanation:
a) To find the index of refraction of the syrup solution you use the Snell's law:
(1)
n1: index of refraction of air
n2: index of syrup solution
angle1: incidence angle
angle2: refraction angle
You replace the values of the parameter in (1) and calculate n2:

b) To fond the wavelength in the solution you use:

c) The frequency of the wave in the solution is:

d) The speed in the solution is given by:

Answer:
Explanation:
the center of mass formula
Ycm= [(m₁y₁) + (m₂y₂) + (m₃y₃)] / (m₁+m₂+m₃)
Rope forms the x axis and position of centre of different massses are above or below it so they represent their location on y - axis.
y₁ = 1.6 , y₂ = .7 and y₃ = - 2.1
Ycm ( given ) = - .5
Putting the values of masses and positions
- .5 = 80 x 1.6 + 20 x .7 + m₃ x - 2.1 / ( 80 + 20 + m₃ )
- .5 = 128 + 14 + m₃ x - 2.1 / ( 100+ m₃ )
- 50 - .5 m₃ = 142 - 2.1 m₃
1.6 m₃ = 192
m₃ = 120 kg .
B )
Total downward force is weight of total mass = 80 + 20 + 120
= 220 kg
weight = 220 x 9.8 = 2156 N .
component of weight perpendicular to rope
= 2156 cos 15 = 2082.53 N
This force will be equally distributed over each tree , so force on each tree = 2082.53 / 2 = 1041.26 N .
Explanation:
It is given that,
Speed of the sports car, v = 85 mph = 37.99 m/s
The radius of curvature, r = 525 m
Let
is the normal weight and
is the apparent weight of the person. Its apparent weight is given by :

So, 



or

Hence, this is the required solution.