Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.
A mid ocean ridge is a under water mountain range, knowing this what would you say it is most similar to on land? hope this helped!
Answer:
100°heat
Explanation:
since when i calculate this and that, the answer is 100° heat.
sorry if it is inconvenient
This is an insidious question. Quite frankly, I would not have
expected to see it here on Brainly. But I'm ready to play the
cards that you have dealt me.
None of the choices offered is a correct solution.
If the output of the AC generator is nice and sinusoidal, and
its maximum (peak) emf is 150 volts, then its RMS emf is
(1/2) (150) (√2) = 106.07 volts.
The resistor's dissipation is
Power = (current) x (voltage) .
If the resistor is dissipating its full rated 35W, then
35W = (current) x (106.07 V)
Divide each side by 106.07 V:
RMS Current = (35W) / (106.07 V) = 0.33 Ampere .
_________________________________________
Looking over the choices offered . . .
The largest choice ... 3.1 A ... is the current in a resistor
that is dissipating 35W if the voltage is
(35W / 3.1A) = 11.29 volts .
The smallest choice ... 1.2 A ... is the current in a resistor
that is dissipating 35W if the voltage is
(35W / 1.2A) = 29.17 volts .
Whatever you meant the so-called "150 V" of the generator
to represent ... whether the RMS sinusoidal, peak sinusoidal,
peak square-wave, RMS square-wave, DC, average, etc. ...
none of the choices for current, in combination with any of these
generators, would dissipate 35W.