Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation:
Answer:
1.99 x 10⁻¹⁸J
Explanation:
Given parameters:
Frequency of the wave = 3 x 10¹⁵Hz
Unknown:
Energy of the photon = ?
Solution:
To solve this problem, we use the expression below;
E = hf
Where E is the energy, h is the Planck's constant and f is the frequency
Now insert the parameters and solve for E;
E = 6.63 x 10⁻³⁴ x 3 x 10¹⁵ = 19.9 x 10⁻¹⁹J or 1.99 x 10⁻¹⁸J
The wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
<em>"Your question is not complete, it seems to be missing the diagram of the emission spectrum"</em>
the diagram of the emission spectrum has been added.
<em>From the given</em><em> chart;</em>
The wavelength of the atomic emission corresponding to the orange line is 610 nm = 610 x 10⁻⁹ m
The frequency of this emission is calculated as follows;
c = fλ
where;
- <em>c is the speed of light = 3 x 10⁸ m/s</em>
- <em>f is the frequency of the wave</em>
- <em>λ is the wavelength</em>

The energy of the emitted photon corresponding to the orange line is calculated as follows;
E = hf
where;
- <em>h is Planck's constant = 6.626 x 10⁻³⁴ Js</em>
<em />
E = (6.626 x 10⁻³⁴) x (4.92 x 10¹⁴)
E = 3.26 x 10⁻¹⁹ J.
Thus, the wavelength of the orange line is 610 nm, the frequency of this emission is 4.92 x 10¹⁴ Hz and the energy of the emitted photon corresponding to this <em>orange line</em> is 3.26 x 10⁻¹⁹ J.
Learn more here:brainly.com/question/15962928
The bacteria in nasty environment undergoes multiple fission.
<h3><u>Explanation</u>:</h3>
The bacteria is a unicellular prokaryotic organisms that are found in each and every places of the world. They can survive in extremes of temperatures and pH. They can save themselves through special processes in the extreme climates.
The bacteria undergoes multiple fission in these climates. They cover themselves up with a strong and tough capsule inside which they undergo several Binary fissions. This leads to the formation of multiple cells enclosed with a capsule.
With the return of the favourable climate, the capsule rupture and these newly formed cells come out.
There are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated by multiplying the molarity by the volume.
No. of moles = Molarity × volume
According to this question, 3L of a KBr solution are contained in a 0.4M.
no. of moles = 3L × 0.4M = 1.2moles
Therefore, there are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
Learn more about no. of moles at: brainly.com/question/14919968