Answer: option A. 350 K and 0.30 atm
Explanation: a gas behaves as an ideal gas at higher temperature and low pressure
It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443
Answer:
[OH-] = 6.17 *10^-10
Explanation:
Step 1: Data given
pOH = 9.21
Step 2: Calculate [OH-]
pOH = -log [OH-] = 9.21
[OH-] = 10^-9.21
[OH-] = 6.17 *10^-10
Step 3: Check if it's correct
pOH + pH = 14
[H+]*[OH-] = 10^-14
pH = 14 - 9.21 = 4.79
[H+] = 10^-4.79
[H+] = 1.62 *10^-5
6.17 * 10^-10 * 1.62 * 10^-5 = 1* 10^-14
They contain Carbon, Nitrogen, Hydrogen, Oxygen, and Sulfur
The answer will be 12 nitrogen or N2 will be produced because if you changed the coefficient to 12 on the reactant side and distribute, the nitrogen would be 12 when distributed and what happens on one side has to equal to the other side, which is the product side.