Divide each wight by the relative atomic mass
C = 216 / 12 = 18
H = 36 / 1 = 36
O = 288/16 = 18
Ratio of C:h:O = 1:2:1
Empirical formula is CH2O Could be formaldehyde HCHO.
Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
Answer:
NaOH
Explanation:
Look at charge Na has +1 charge and Ca has +2 charge after dissociation . Greater charge Stronger lattice. And as we need weak Lattice, so NaoH is stronger base than Ca(OH)2.
Answer:
200 °C
Explanation:
Let’s convert all the temperatures to the same scale, say, Celsius.
<em>Celsius</em>
Water boils at 100 °C, so 200 °C is the temperature of <em>superheated steam</em>.
<em>Fahrenheit
</em>
Water boils at 212 °F, so 200 °F is <em>just below the boiling point of water</em>.


<em>Kelvin
</em>
Standard temperature is 0 °C = 273.15 K. Ice melts at 273.15 K (0 °C), so
200 K is <em>well below the melting point of ice</em>.
C = K – 273.15
C = 200 -273.15 = -73 °C
Thus, 200 °C is the hottest temperature.
In atomic models balls represent an atom
Now if an atom like carbon has four holes it means it can bond with four atoms. It has valency = 4.
The atomic number of carbon is 6
the configuration is 1s2 2s2 2p2
So due to four valence electrons it can bind with four other atoms and thus we have four holes in carbon ball
The hydrogen show a valency of one
the atomic number of hydrogen = 1
its configuration is 1s1
So it can bind with one atom (max) thus we have one hole in hydrogen ball