1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
3 years ago
9

Simplify the expression (8x^3y^2/4a^2b^4)^-2

Mathematics
1 answer:
icang [17]3 years ago
3 0
Simplify the following:
((8 x^3 y^2 a^2 b^4)/4)^(-2)
8/4 = (4×2)/4 = 2:
(2 x^3 y^2 a^2 b^4)^(-2)
Multiply each exponent in 2 x^3 y^2 a^2 b^4 by -2:
(x^(-2×3) y^(-2×2) a^(-2×2) b^(-2×4))/(2^2)
-2×3 = -6:
(x^(-6) y^(-2×2) a^(-2×2) b^(-2×4))/2^2
-2×2 = -4:
(y^(-4) a^(-2×2) b^(-2×4))/(2^2 x^6)
-2×2 = -4:
(a^(-4) b^(-2×4))/(2^2 x^6 y^4)
-2×4 = -8:
b^(-8)/(2^2 x^6 y^4 a^4)
2^2 = 4:
Answer: 1/(4 x^6 y^4 a^4 b^8) thus the answer is A
You might be interested in
What is 20% of 120? <br> Select one:<br><br> 20<br><br> 60<br><br> 240<br><br> 24
sashaice [31]
24 is the answer !!!!!!
6 0
3 years ago
Read 2 more answers
How do I solve these math problems
olchik [2.2K]
Its simple. You collect like terms and put them on one side of the equation

6 0
4 years ago
I don't understand this. please help me, much appreciated !!
nevsk [136]

Apparently, the calculator at the link in your lesson is fully capable of giving you the necessary numbers. My own TI-84 work-alike gives me the account balances, but the rest of the numbers need to be figured.

In 30 years, there are 12×30 = 360 months, or 4×30 = 120 quarters. See the calculator results below. Your table can be filled in using the given information to find the contribution amount. The calculator gives the final balance. The interest amount is found by subtracting the contribution amount from the final balance.

\begin{array}{cccc}\text{Opt}&\text{Contributions}&\text{Int}&\text{Final Bal}\\1&360\cdot 25=9000&6250.50&15250.50\\2&120\cdot 75=9000&8467.04&17467.04\\3&1000&5489.17&6489.17\end{array}


3 0
3 years ago
Need Answer ASAP 5 min.
nasty-shy [4]

Answer:

48

Step-by-step explanation:

55+65=120 and 2/5 of 120 is 48

3 0
3 years ago
Solve the Anti derivative.​
Alex Ar [27]

Answer:

\displaystyle \int {\frac{1}{9x^2+4}} \, dx = \frac{1}{6}arctan(\frac{3x}{2}) + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:                                                                \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:                                                                                                           \displaystyle \int {\frac{du}{a^2 + u^2}} = \frac{1}{a}arctan(\frac{u}{a}) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \int {\frac{1}{9x^2 + 4}} \, dx<u />

<u />

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Factor fraction denominator:                                                         \displaystyle \int {\frac{1}{9(x^2 + \frac{4}{9})}} \, dx
  2. [Integral] Integration Property - Multiplied Constant:                                   \displaystyle \frac{1}{9} \int {\frac{1}{x^2 + \frac{4}{9}}} \, dx

<u>Step 3: Identify Variables</u>

<em>Set up u-substitution for the arctan trig integration.</em>

\displaystyle u = x \\ a = \frac{2}{3} \\ du = dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Substitute u-du:                                                                               \displaystyle \frac{1}{9} \int {\frac{1}{u^2 + (\frac{2}{3})^2} \, du
  2. [Integral] Trig Integration:                                                                               \displaystyle \frac{1}{9}[\frac{1}{\frac{2}{3}}arctan(\frac{u}{\frac{2}{3}})] + C
  3. [Integral] Simplify:                                                                                           \displaystyle \frac{1}{9}[\frac{3}{2}arctan(\frac{3u}{2})] + C
  4. [integral] Multiply:                                                                                           \displaystyle \frac{1}{6}arctan(\frac{3u}{2}) + C
  5. [Integral] Back-Substitute:                                                                             \displaystyle \frac{1}{6}arctan(\frac{3x}{2}) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

7 0
3 years ago
Other questions:
  • Can someone help me with this one ​
    12·1 answer
  • Julia has 36 books she wants to donate 2/3 of them to a library book drive how many books will she donate? Draw a model to show
    11·1 answer
  • Which is a unit rate?
    13·1 answer
  • What the missing term is
    12·1 answer
  • The factored form of the expression -25t - 175 is
    6·1 answer
  • Reposting becuase it want let me edit my last one and somebody spam answered it.
    10·1 answer
  • 2w^2 - 28w + c what does C =
    14·1 answer
  • If 0 ≤ Ø &lt; 90 degrees, and tan Ø= 2/3, what is sinØ + cosØ?
    8·1 answer
  • Please help me with this question
    12·2 answers
  • Find the values of x for the following equations..<img src="https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2B4x-98%3D0" id="TexFormula1"
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!