Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have


Answer:
The force will have to increase
Explanation:
Since Juan has upgraded from a sports car to a large truck, based on Newton's second law of motion, the force needed to keep the truck going at the same speed will have to increase.
According to Newton's second law "the force on an object is equal to the product of its mass and acceleration".
Force = mass x acceleration
A truck has a larger mass compared to a sports car.
By virtue of this, to make sure both automobiles attain the same speed, the force powering them to accelerate must be the same.
Therefore, the force from the engine must increase.
Answer:
(a) the mechanical energy of the system, U = 0.1078 J
(b) the maximum speed of the object, Vmax = 0.657 m/s
(c) the maximum acceleration of the object, a_max = 15.4 m/s²
Explanation:
Given;
Amplitude of the spring, A = 2.8 cm = 0.028 m
Spring constant, K = 275 N/m
Mass of object, m = 0.5 kg
(a) the mechanical energy of the system
This is the potential energy of the system, U = ¹/₂KA²
U = ¹/₂ (275)(0.028)²
U = 0.1078 J
(b) the maximum speed of the object

(c) the maximum acceleration of the object

The motion of the inferior angle of the scapula in the superior and lateral direction is called upward rotation.
<h3>What are the possible motions of the scapula?</h3>
The scapula or the shoulder blade has about six different types of motion it undergoes.
The six ways of movement of the scapula are:
- protraction,
- retraction,
- elevation,
- depression,
- upward rotation, and
- downward rotation
When the inferior angle of the scapula moves in the superior and lateral direction, the motion is called upward rotation.
Learn more about scapula motion at: brainly.com/question/16868917
#SPJ12
-- Take a sample of the first fluid.
-- Measure its mass.
-- Measure its volume.
-- Divide its mass by its volume.
This gives you the density of the first fluid.
-- Take a sample of the second fluid.
-- Measure its mass.
-- Measure its volume.
-- Divide its mass by its volume.
This gives you the density of the second fluid.
You want their average ?
OK
-- Add (Density of the first fluid) + (Density of the second fluid).
-- Divide the sum by 2 .
Now you have the average of the two densities.
Note:
That's NOT necessarily the density of a mixture when you
pour some of fluid-1 and fluid-2 into a jar. The density of the
fluid in the jar is going to depend on how much of each fluid is
in there.
I started to calculate how much of each one has to be there in order
for the density of the mixture to be equal to the average of their two
densities. But then I sat up straight, asked myself "Why ? !" .
Then I stopped, and went into the kitchen and ate some meatloaf.