A = 94.22 Newtons
b = 58.16 kg
Gravity on the moon is 1.62 m/s^2
Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
They are used to separate mixtures into their component compounds but can no usually be used to deprecate compounds into chemical elements or simpler compounds
The acceleration of the runner in the given time is 2.06m/s².
Given the data in the question;
Since the runner begins from rest,
- Initial velocity;

- Final velocity;

- Time elapsed;

Acceleration of the runner; 
<h3>Velocity and Acceleration</h3>
Velocity is the speed at which an object moves in a particular direction.
Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion

Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.
To determine the acceleration of the runner, we substitute our given values into the equation above.

Therefore, the acceleration of the runner in the given time is 2.06m/s².
Learn more about Equations of Motion: brainly.com/question/18486505