Answer:
La aceleración necesaria para detener el avión es - 10.42 m/s².
Explanation:
Un movimiento uniformemente acelerado (M.U.A) es aquél cuya aceleración es constante y la velocidad de un objeto cambia a medida que el movimiento evoluciona.
Siendo la aceleración "a" el cambio de velocidad al tiempo transcurrido en un punto A a B, la velocidad inicial la velocidad que tiene un cuerpo al iniciar su movimiento en un período de tiempo y la velocidad final la velocidad que tiene un cuerpo al finalizar su movimiento en un período de tiempo, entonces en M.U.A se cumple:
Vf² - Vo² = 2*a*d
donde:
- Vf: Velocidad final
- Vo: Velocidad inicial
- a: Aceleración
- d: Distancia recorrida
En este caso:
- Vf: 0 m/s, porque el avión se detiene
- Vo: 50 m/s
- a: ?
- d: 120 m
Reemplazando:
(0 m/s)² - (50 m/s)² = 2*a*120 m
Resolviendo:

a= - 10.42 m/s²
<u><em>La aceleración necesaria para detener el avión es - 10.42 m/s².</em></u>
Answer:
Answer:
6.68 x 10^16 m/s^2
Explanation:
Electric field, E = 3.8 x 10^5 N/C
charge of electron, q = 1.6 x 10^-19 C
mass of electron, m = 9.1 x 10^-31 kg
Let a be the acceleration of the electron.
The force due to electric field on electron is
F = q E
where q be the charge of electron and E be the electric field
F = 1.6 x 10^-19 x 3.8 x 10^5
F = 6.08 x 10^-14 N
According to Newton's second law
Force = mass x acceleration
6.08 x 10^-14 = 9.1 x 10^-31 x a
a = 6.68 x 10^16 m/s^2
Explanation:
The wavelength of a microwave of 3 x 10^9 Hz frequency is 0.1 m.
The wavelength of a microwave of 3 x 10^9 Hz frequency is calculated using the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency.
The speed of light is approximately 3 x 10^8 m/s. Therefore, the wavelength of a microwave of 3 x 10^9 Hz frequency can be calculated as follows:
λ = 3 x 10^8 m/s/3 x 10^9 Hz
= 0.1 m.
Therefore,the wavelength of a microwave of 3 x 10^9 Hz frequency is 0.1 m.
Microwaves are electromagnetic waves that have a frequency between 300 MHz to 300 GHz and a wavelength from 1 mm to 1 m. Microwaves have a variety of uses, including communications, radar, and cooking. Microwave radiation is absorbed by water, fats, and sugars, which is why it is used for cooking.
The frequency of a microwave is usually expressed in megahertz (MHz) or gigahertz (GHz). One megahertz is equal to one million hertz and one gigahertz is equal to one billion hertz. The frequency of a microwave determines its wavelength; the higher the frequency, the shorter the wavelength.
Learn more about electromagnetic waves at :brainly.com/question/3101711
#SPJ4
Answer:
+5m/s
Explanation:
When doing the math we figure out that e is going to be slowing down at -4m/s² for 5 seconds. In total he is slowing down -20m/s which we take from the total speed of +25m/s to get his current new speed.
B.The water molecules in the black can had the largest increase in average kinetic energy.
<u>Explanation:</u>
Here, black painted can absorbs more heat than the other color painted cans.
Black color absorbs all the heat and didn't reflect anything back, so it absorbs the most heat.
White color reflects all the heat, so heat absorbed by the white can is least.
When the black can absorbs heat then the water molecules in the can gets its maximum amount of kinetic energy so that the water molecules in the can collide with each other and also along with the walls of the can here, and so the average kinetic energy increases.