I think is A or B it depends on like what the trying to answer
Answer:
Option A. 180000 Kgm/s.
Explanation:
From the question given above, the following data were obtained:
For Train Car A:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
For Train Car B:
Mass of train car B = 45000 Kg
Velocity of train car B = 0 m/s
Momentum is simply defined as the product of mass and velocity. Mathematically, it can be expressed as:
Momentum = mass × velocity
With the above formula, the momentum of train car A before collision can be obtained as follow:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
Momentum = mass × velocity
Momentum = 45000 × 4
Momentum of train car A = 180000 Kgm/s
potential energy = mass × gravity × height
so, change in potential energy = mass × gravity × change in height
2 = 50 × 10 × Δh
2 ÷ 500 = Δh
Δh = 0.004 m
This distance does depend on the initial velocity of the ball.
Answer:
4.5 metres
Explanation:
Using Hooke's Law (
)
We need to find the spring constant of the bungee cord with the given extension and force, we can do this by substituting in known values.

Now we have found the spring constant of the bungee cord, we can substitute it in for the a different force. As the cord is the same we can use the same spring constant.

H3 in reaction: NH3 + H2O→NH4 + OH-
<span>The NH3 has gained an H - it is a base
true</span>