B; Seawater mixes with freshwater so the water has intermediate salinity
Explanation:
In an estuary, seawater mixes with freshwater so the water has intermediate salinity. Estuaries are usually located in transitional environments.
- Estuary is the wide part of a river where it nears the sea.
- This is called a transitional zone.
- Water from continental rivers usually fresh are brought in close contact with ocean water that is salty.
- The water here is said to be brackish as it is intermediate between salt and seawater.
- Organisms living in such terrain must be be well adapted to changing salinity.
Learn more:
salinity and density brainly.com/question/10491444
#learnwithBrainly
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
Answer:
Explanation:
He should use these for airborne sounds
MDF Fiberboard.
Gypsum Board.
Plasterboard.
Mineral Wool.
He should avoid using
Carbon-14 is a radioactive isotope used to date organic material. Its consistent rate of decay allows the age of an object to be determined by the proportion of carbon-14 to other carbon isotopes. This process is called radiocarbon dating. Carbon-14 is also used as a radioactive tracer for medical tests.