Answer:
A sample of oxygen gas occupies a volume of 250. ... volume will it occupy at 800. torr pressure? ... A 2.0 liter container of nitrogen had a pressure of 3.2 atm. ... A sample of hydrogen at 1.5 atm had its pressure decreased to 0.50 atm producing
Explanation:
Answer:
8
Explanation:
You are going to divide the 24 moles of H by the moles of H used in Ammonia. In this case 3
24/3=8
The molecular formula of the compound is C12H15O3 hence the molar mass of the compound is 207 g/mol.
We need to obtain the number of moles of carbon, hydrogen and oxygen in the compound;
Carbon = 24.91 g/44g/mol × 1 mole of carbon = 0.566 moles
Mass of carbon = 0.566 moles × 12 g/mol = 6.792 g
Number of moles of hydrogen = 6.522 g/18 g/mol × 2 moles = 0.725 moles
Mass of hydrogen = 0.725 moles × 1 g/mol = 0.725 g
Mass of oxygen = 10 - (6.792 g + 0.725 g) = 2.483 g
Number of moles of oxygen = 2.483 g/16 g/mol = 0.155 moles
Now we must divide through by the lowest number of moles;
C - 0.566/0.155 H - 0.725/0.155 O - 0.155/0.155
C - 4 H - 5 O - 1
The simplest formula is C4H5O Recall that the molar mass of the compound lies between 150.0 and 220.0 g/mol
4(12) + 5(1) + 16 = 69
Hence; n = 3 and the molecular formula of the compound is C12H15O3
The molar mass of the compound is; 12(12) + 15(1) + 3(16) = 207 g/mol
Learn more: brainly.com/question/15180604
Answer:
14.53ML
Explanation:
V1=218
V2=?
P2=15p1
USING BOYLE'S LAW
P1V1=P2V2
V2=P1V1/P2=P1(218ML)/15P1
=14.53ML
Answer:
kinetic
Explanation:
kinetic energy starts the motion of water which in turn converts electricity