The answer is A) Aluminum Bromide
hope this helps :)
A physical property is an aspect of matter that can be observed or measured without changing it. A chemical property may only be observed by changing the chemical identity of a substance.
Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
Answer:
Approximately
.
Explanation:
The Lyman Series of a hydrogen atom are due to electron transitions from energy levels
to the ground state where
. In this case, the electron responsible for the line started at
and transitioned to
A hydrogen atom contains only one electron. As a result, Bohr Model provides a good estimate of that electron's energy at different levels.
In Bohr's Model, the equation for an electron at energy level
(
(note the negative sign in front of the fraction,)
where
is a constant.
is the atomic number of that atom.
for hydrogen.
is the energy level of that electron.
The electron that produced the
line was initially at the
.
The electron would then transit to energy level
. Its energy would become:
.
The energy change would be equal to
.
That would be the energy of a photon in that
spectrum line. Planck constant
relates the frequency of a photon to its energy:
, where
is the energy of the photon.
is the Planck constant.
is the frequency of that photon.
In this case,
. Hence,
.
Note that
.
Answer:
Read Below
Explanation:
Electrolysis is not possible with solid lead (II) bromide. This is because the ions are held in a three-dimensional lattice, unable to move freely to the electrodes. Melting enables the ions to become mobile and to travel to the respective electrodes.
The bulb won't glow when the electrodes are embedded in solid lead bromide. The bulb will glow when the material surrounding the electrodes is molten lead bromide. When an ionic compound is in the molten (liquid) form the positive and negative ions are free to move around.
Hopes this Helps :D
Brainiest Please