Answer:
The simplified version of
is
.
Step-by-step explanation:
The given expression is
![\sqrt[3]{135}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D)
According to the property of radical expression.
![\sqrt[n]{x}=(x)^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%3D%28x%29%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
Using this property we get
![\sqrt[3]{135}=(135)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%28135%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{135}=(27\times 5)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%2827%5Ctimes%205%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{135}=(3^3\times 5)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D%283%5E3%5Ctimes%205%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![[\because (ab)^x=a^xb^x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28ab%29%5Ex%3Da%5Exb%5Ex%5D)
![[\because \sqrt[n]{x}=(x)^{\frac{1}{n}}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csqrt%5Bn%5D%7Bx%7D%3D%28x%29%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5D)
![\sqrt[3]{135}=3\sqrt[3]{5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B135%7D%3D3%5Csqrt%5B3%5D%7B5%7D)
Therefore the simplified version of
is
.
Answer:
-2.1
Step-by-step explanation:
-7.3 - 11.2 - 1.7 + 0 + 0 +2.2 + 3.3
--------------------------------------------------
7
= -2.1
The answer is x = 10, y = 10.
Step 1: rearrange the second equation for y.
Step 2: substitute y from the second equation into the first equation.
Step 3. Calculate y.
Step 1.
<span>The second equation is: 6x + 3y = 90
Divide both sides of the equation by 3:
(6x + 3y)/3 = 90/3
6x/3 + 3y/3 = 30
2x + y = 30
Rearrange the equation:
y = 30 - 2x
Step 2.
</span>Substitute y from the second equation (y = 30 - 2x) into the first equation:
<span>15x + 9y = 240
15x + 9(30 - 2x) = 240
15x + 270 - 18x = 240
15x - 18x = 240 - 270
-3x = -30
x = -30/-3
x = 10
Step 3.
Since </span>y = 30 - 2x and x = 10, then:
y = 30 - 2 * 10
y = 30 - 20
y = 10
The square is reflected but the part Ellen sides would remain the same as the starting location.
Side PO would be parallel to side PS. INCORRECT
Side PQ would be parallel to side SR. CORRECT
Side PS would be parallel to side QR. CORRECT