The answer is 300 feet. The stop lamp or lamps on the rear of a vehicle must show a red light that is set in motion upon application of the service or foot brake and, in a vehicle manufactured or assembled on or after January 1, 1964, must be visible from a distance of not less than 300 feet to the rear in normal sunlight. Take note, if the vehicle is manufactured or assembled January 1, 1964, the stop lamp or lamps must be visible from a distance of not less than 100 feet. Also, the stop lamp may be combined with one or more other rear lamps.
Answer:
o
Explanation:
the increase energy stored in thw system is proportional to the decrease in kinetic energy
If an atom gains electrons, it develops a negative charge equal to the number of electrons gained.
So the net charge on the copper atom which gained 2 electrons will be -2.
Answer:
Explanation:
for baseball
(a) Let the mass of the baseball is m.
radius of baseball is r.
Total kinetic energy of the baseball, T = rotational kinetic energy + translational kinetic energy
T = 0.5 Iω² + 0.5 mv²
Where, I be the moment of inertia and ω be the angular speed.
ω = v/r
T = 0.5 x 2/3 mr² x v²/r² + 0.5 mv²
T = 0.83 mv²
According to the conservation of energy, the total kinetic energy at the bottom is equal to the total potential energy at the top.
m g h = 0.83 mv²
where, h be the height of the top of the hill.
9.8 x h = 0.83 x 6.8 x 6.8
h = 3.93 m
(b) Let the velocity of juice can is v'.
moment of inertia of the juice can = 1/2mr²
So, total kinetic energy
T = 0.5 x I x ω² + 0.5 mv²
T = 0.5 x 0.5 x m x r² x v²/r² + 0.5 mv²
m g h = 0.75 mv²
9.8 x 3.93 = 0.75 v²
v = 7.2 m/s
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean