It would be 0.341 because if you add 0.229 and 0.112 it will be 0.341
Answer:
It is a physical change because this change is reversible and no chemical reaction occurs.
Explanation:
The solubility of carbon dioxide at 400 kPa at room temperature is ;
( B ) 0.61 CO2/L
<u>Given data </u>
pressure of CO₂ = 400 Kpa = 3.95 atm
Kh of CO₂ = 3.3 * 10⁻² mol/L.atm
<h3>Calculate the solubility of carbon dioxide </h3>
Solubility = pressure * Kh value of CO₂
= 3.95 atm * 3.3 * 10⁻² mol / L.atm
= 0.13 mol/l CO₂
= 0.61 CO₂ / L
Hence we can conclude that the solubility of CO₂ at 400 kPa is 0.13 mol/l CO₂.
Learn more about solubility : brainly.com/question/23946616
From the options the closest answer is ( B ) 0.61 CO₂ / L
Answer : The oxidation state of Mg in Mg(s) is (0).
Explanation :
Oxidation number or oxidation state : It represent the number of electrons lost or gained by the atoms of an element in a compound.
Oxidation numbers are generally written with the sign (+) and (-) first and then the magnitude.
Rules for Oxidation Numbers are :
The oxidation number of a free element is always zero.
The oxidation number of a monatomic ion equals the charge of the ion.
The oxidation number of Hydrogen (H) is +1, but it is -1 in when combined with less electronegative elements.
The oxidation number of oxygen (O) in compounds is usually -2.
The oxidation number of a Group 17 element in a binary compound is -1.
The sum of the oxidation numbers of all of the atoms in a neutral compound is zero.
The sum of the oxidation numbers in a polyatomic ion is equal to the charge of the ion.
The given chemical reaction is:

In the given reaction, the oxidation state of Mg in Mg(s) is (0) because it is a free element and the oxidation state of Mg in
is (+2).
Hence, the oxidation state of Mg in Mg(s) is (0).
Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!