C cuz it just doesn’t make sense
Answer:
A molecule is tetrahedral if the central atom has four bonds and no lone pairs.
Explanation:
A typical example is a molecule of methane (see image).
The electron pairs in the bonds repel the electrons in the other bonds, so they all try to get as far from each other as possible.
They can do this if the bonds point to the corners of a tetrahedron, with bond angles of 109.5°.
Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
Answer:
Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom. ... Covalent compounds tend to be soft, and have relatively low melting and boiling points.
Answer:
True
Explanation:
An orbital is is the space occupied by a pair of electrons. The maximum number of electrons in an orbital is 2.
The maximum number of electrons in in the orbitals are two.
For s-sublevel with one orbital we have two electrons
p-sublevel with three orbitals we have six electrons
d - sublevel with five orbitals we have ten electrons
f - sublevel with seven orbitals we have fourteen electrons
Each orbital can take a maximum of two electrons.