<span>When a substance changes from one state, or phase, of matter to another we say that it has undergone a change of state, or we say that it has undergone a change of phase. For example, ice melts and becomes water; water evaporates and becomes water vapor.These changes of phase always occur with a change of heat. Heat, which is energy, either comes into the material during a change of phase or heat comes out of the material during this change. However, although the heat content of the material changes, the temperature does not.</span>
The alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
<h3>What are the properties of alkali metals?</h3>
The alkali metals have the high thermal and electrical conductivity. It has high lustre, ductility, and malleability as compared to other materials. Each alkali metal atom has one electron in its outermost shell which make more reactive.
So we can conclude that the alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
Learn more about metal here: brainly.com/question/25597694
#SPJ1
First, we must know what happens in the precipitation reaction. This type of reaction is a double replacement reactions. It is consists of two reactant compounds which interchange cations and anions to form two products. One of the products is an insoluble solid called a precipitate. For the precipitation of CaCO₃, there are two consecutive reactions involved:
1. Slaking of quicklime, CaO
CaO + H₂O ⇒ Ca(OH)₂
2. Precipitation
Ca(OH)₂ + CO₂ ⇒ CaCO₃ + H₂O
The ions that make up the H₂O molecule are H⁺ and OH⁻. According to solubility rules, the cation (positively charged ion) is likely to be attracted to an anion (negatively charged ion). Together, they form an ionic bond. This type of bond is when there is a complete transfer of electrons between the two. The Ca²⁺ cation lacks 2 electrons, while the anion OH⁻ has an excess 1 electron. In order to be stable, 1 Ca²⁺ ion and 2 OH⁻ ions must combine.
Therefore, the answer is OH⁻ ion.
<span>In a mole of anything, there are 6.023 x 10^23 units. So, in 3.9 moles of sulfur, there are 3.9 * 6.023 x 10^23 = 23 x 10^23 = 2.3 x 10^24 atoms (keeping only 2 sig figs). Hope I help!!
</span>