Answer:Acids taste sour, react with metals, react with carbonates, and turn blue litmus paper red. Bases taste bitter, feel slippery, do not react with carbonates and turn red litmus paper blue.
Explanation:
- Sour taste (though you should never use this characteristic to identify an acid in the lab)
- Reacts with a metal to form hydrogen gas.
- Increases the H+ concentration in water.
Answer:
Provide more strength
Explanation:
Rust is metal that has been oxidised . Oxides are usually more fragile and porous than their crystals metal equivalents. Some oxides, such as Aluminum oxide, are useful because they have a thin, strong shell that protects the metal from further corrosion.
<span>D.) Oxygen would acquire a stable arrangement of electrons by bonding with two atoms of "Magnesium"
[ As Mg has 2 extra electrons & their size are quite similar ]
Hope this helps!</span>
M=11.20 g
m(H₂)=0.6854 g
M(H₂)=2.016 g/mol
M(Mg)=24.305 g/mol
M(Zn)=65.39 g/mol
w-?
m(Mg)=wm
m(Zn)=(1-w)m
Zn + 2HCl = ZnCl₂ + H₂
m₁(H₂)=M(H₂)m(Zn)/M(Zn)=M(H₂)(1-w)m/M(Zn)
Mg + 2HCl = MgCl₂ + H₂
m₂(H₂)=M(H₂)m(Mg)/M(Mg)=M(H₂)wm/M(Mg)
m(H₂)=m₁(H₂)+m₂(H₂)
m(H₂)=M(H₂)(1-w)m/M(Zn)+M(H₂)wm/M(Mg)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
m(H₂)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
(1-w)/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
1/M(Zn)-w/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
w(1/M(Mg)-1/M(Zn))=m(H₂)/{M(H₂)m}-1/M(Zn)
w=[m(H₂)/{M(H₂)m}-1/M(Zn)]/(1/M(Mg)-1/M(Zn))
w=0.583 (58.3%)
Answer: 120g/mol
Explanation:
The first step we are to take is to calculate the freezing point depression of the solution.
ΔT(f) = freezing point of pure solvent - freezing point of solution
ΔT(f) = 5.48 - 3.77
ΔT(f) = 1.71°C
Next we are to calculate the molal concentration of the solution using freezing point depression
ΔT(f) = K(f) * m
m = ΔT(f)/K(f)
m = 1.71/5.12
m = 0.333 molal
Now, we calculate the molecular weight of the unknown...
m = 0.333 mol = 0.333 mol X per kg of benzene
moles of X = 0.333 mol of X per kg of benzene * 0.5kg of benzene
moles of X = 0.1665
molecular weight of X = 20g of X/0.1665
molecular weight of X = 120/mol