Answer:
0.15 l of 4.0 m stock KCl solution should betaken
Explanation:
N1V1=N2V2
6*0.1=V2*4
V2=0.15L
Answer:
the final volume of the gas is
= 1311.5 mL
Explanation:
Given that:
a sample gas has an initial volume of 61.5 mL
The workdone = 130.1 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm ; we have
External Pressure
:


The workdone W =
V
The change in volume ΔV= 
ΔV = 
ΔV = 
ΔV = 1.25 L
ΔV = 1250 mL
Recall that the initial volume = 61.5 mL
The change in volume V is 

multiply through by (-), we have:

= 1250 mL + 61.5 mL
= 1311.5 mL
∴ the final volume of the gas is
= 1311.5 mL
Answer:
That would be fracture
Explanation:
A way that a mineral breaks apart curved at the edges or split into uneven pieces
Answer:
Pressure, P = 67.57 atm
Explanation:
<u>Given the following data;</u>
- Volume = 0.245 L
- Number of moles = 0.467 moles
- Temperature = 159°C
- Ideal gas constant, R = 0.08206 L·atm/mol·K
<u>Conversion:</u>
We would convert the value of the temperature in Celsius to Kelvin.
T = 273 + °C
T = 273 + 159
T = 432 Kelvin
To find the pressure of the gas, we would use the ideal gas law;
PV = nRT
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;

Substituting into the formula, we have;


<em>Pressure, P = 67.57 atm</em>
[AR] 3d10 4s2 is the configuration for zinc