Answer:
A experimental investigation
These are not questions but the directions or guide to completing your assignment.
I will provide you will with a choice of concept maps you can use:
- tree map
- circle maps
-comparison map ( might be best)
Please vote my answer branliest! Thanks.
The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the </span>law of conservation of mass<span>, the </span>mass<span> of the products in a chemical reaction must equal the </span>mass<span> of the reactants.
</span>
So the first thing we must do is write a balanced equation for the reaction and we know the equation is balnced when all the species on the RHS is equal to the species on the LHS
2NaOH + H₂SO₄ → Na₂SO₄<span>
+ 2H₂O</span>
So now it's time to identify what reactant you know the most for from the question (volume & conc. of H₂SO₄) and use that info to find the unknown (conc. of NaOH)
If 1000 ml of H₂SO₄ contain 0.750 mol [0.750 M is the amount of moles in
1 L (1000 ml)]
then let 15 ml of H₂SO₄ contain x mol [15 ml is the amount of the acid that took part in the reaction]
⇒
x =
= 0.01125 molMole ratio of NaOH to H₂SO₄ can be obtained from the balanced equation
0
2NaOH +
1H₂SO₄ → Na₂SO₄ + 2H₂O
mole ratio of NaOH to H₂SO₄ is 2 : 1∴ if mole of of H₂SO₄ = 0.01125 mol then moles of NaOH = (0.01125 mol) × 2 = 0.0225 molIf 17.5 ml of NaOH contain 0.0225 mol [this was given in the question]
then let 1000 ml of NaOH contain x⇒ x =
= 1.286 mol∴ concentration of NaOH is 1.286 mol/L
At room temperature two atoms of nitrogen combine to form a colorless and odorless diatomic gas. it is found in gaseous state.
hope the answer is helpful.