Answer:
y > 1/2x - 1
First, draw the dashed line y = 1/2x - 1 (slope intercept ; y = mx + b).
Start at -1 on the y-axis, and continue going 2 units to the right, and 1 unit up for the right side of the graph.
Then starting at -1 on the y-axis, continue going 2 units to the left, and 1 unit down for the left side of the graph.
Explanation:
Convert standard form (Ax + By = C) by isolating y from the rest of the equation.
Ax + By = C → y = -Ax/B + C/B → y = mx + b.
Given a standard form equation in inequality form,
x - 2y < 2.
Set it to slope-intercept as an inequality to find the slope and y-intercept.
When negating (making opposite) a variable, you flip the inequality.
x - 2y < 2 → x - 2y - x < 2 - x → -2y < -x + 2 → 2y > x - 2 → <u>y > 1/2x - 1</u><u>.</u>
Answer:
:) :D
Step-by-step explanation:
QUESTION
Your equation is 2x+3y=2 and you need to find the slope.
EXPLANATION
There are many ways to find the slope with an equation like this. I'm going to change the equation into slope-intercept form.
Slope-intercept form is formatted like this:
y=mx+b
m represents the slope. The first thing you need to do is leave 3y alone to change the equation into slope-intercept form. That means you need to subtract 2x from both sides.

The next thing you need to do is leave y alone, just like the slope-intercept form example. To leave y alone, you need to divide 3y by 3.

Now the equation has been changed to slope-intercept form. In the equation, m has been replaced by
, which means that is your answer.
Answer: 
The total cost is given by the equation:
C(t) = 45 + 25(h-1) where h is the number of hours worked.
We can check for each option in turn:
Option A:
Inequality 5 < x ≤ 6 means the hour is between 5 hours (not inclusive) to 6 hours (inclusive)
Let's take the number of hours = 5
C(5) = 45 + (5-1)×25 = 145
Let's take the number of hours = 6
Then substitute into C(6) = 45 + (6-1)×25 = 170
We can't take 145 because the value '5' was not inclusive.
Option B:
The inequality is 6 < x ≤ 7
We take number of hours = 6
C(6) = 25(6-1) + 45 = 170
We take number of hours = 7
Then C(7) = 25(7-1) + 45 = 195
Option C:
The inequality is 5 < x ≤ 6
Take the number of hours = 5
C(5) = 25(5-1) + 45 = 145
Take the number of hours = 6
C(6) = 25(6-1) + 45 = 170
We can't take the value 145 as '5' was not inclusive in the range, but we can take 170
Option D:
6 < x ≤ 7
25(6-1) + 45 < C(t) ≤ 25(7-1) + 45
170 < C(t) ≤ 195
Correct answer: C
<span>A 90 degrees counterclockwise rotation about the origin followed by a translation 1 unit to the left</span>