Answer:338
Step-by-step explanation:
169/2 = 84.5 (base is 84.5) 84.5 * 4 (sides) = 338
For this case we must simplify the following expression:
![\frac {1} {3} (x- \frac {1} {3}) - \frac {1} {2} (\frac {2} {3} x- \frac {1} {2})](https://tex.z-dn.net/?f=%5Cfrac%20%7B1%7D%20%7B3%7D%20%28x-%20%5Cfrac%20%7B1%7D%20%7B3%7D%29%20-%20%5Cfrac%20%7B1%7D%20%7B2%7D%20%28%5Cfrac%20%7B2%7D%20%7B3%7D%20x-%20%5Cfrac%20%7B1%7D%20%7B2%7D%29)
So, if we apply distributive property to the terms within parentheses we have:
![\frac {1} {3} x- \frac {1} {9} - \frac {2} {6} x + \frac {1} {4} =\\\frac {1} {3} x- \frac {1} {9} - \frac {1} {3} x + \frac {1} {4} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B1%7D%20%7B3%7D%20x-%20%5Cfrac%20%7B1%7D%20%7B9%7D%20-%20%5Cfrac%20%7B2%7D%20%7B6%7D%20x%20%2B%20%5Cfrac%20%7B1%7D%20%7B4%7D%20%3D%5C%5C%5Cfrac%20%7B1%7D%20%7B3%7D%20x-%20%5Cfrac%20%7B1%7D%20%7B9%7D%20-%20%5Cfrac%20%7B1%7D%20%7B3%7D%20x%20%2B%20%5Cfrac%20%7B1%7D%20%7B4%7D%20%3D)
We simplify taking into account that:
- Equal signs are added and the same sign is placed.
- Different signs are subtracted and the major sign is placed.
![- \frac {1} {9} + \frac {1} {4} =\\- \frac {4} {36} + \frac {9} {36} =\\\frac {-4 + 9} {36} =\\\frac {5} {36}](https://tex.z-dn.net/?f=-%20%5Cfrac%20%7B1%7D%20%7B9%7D%20%2B%20%5Cfrac%20%7B1%7D%20%7B4%7D%20%3D%5C%5C-%20%5Cfrac%20%7B4%7D%20%7B36%7D%20%2B%20%5Cfrac%20%7B9%7D%20%7B36%7D%20%3D%5C%5C%5Cfrac%20%7B-4%20%2B%209%7D%20%7B36%7D%20%3D%5C%5C%5Cfrac%20%7B5%7D%20%7B36%7D)
Answer:
![\frac {5} {36}](https://tex.z-dn.net/?f=%5Cfrac%20%7B5%7D%20%7B36%7D)
I think, I'd go with A) Always true. As 2 points is always the line. If you add third one, it will be collinear.
Answer:
no
Step-by-step explanation:
because you have two variables x and y, and there is two letters attached to one number 4xy, so no is not a linear equation
Human and non-human species possess a mental system of number representations that appear early in the lifespan and that supports approximate number skills, such as numerical estimation or number comparison. With the later acquisition of language and of symbolic numbers, human beings also develop exact number skills that allow using numbers precisely, such as in counting and arithmetic. The current review points out the behavioral data which either support or challenge these contrasting proposals. In an attempt to provide a comprehensive overview of these mixed data, we carefully took into account the heterogeneity of the available studies regarding the kind of tasks, stimuli or ages of assessment. Also, you can show how the numbers are related simply by identifying the tenth place value of each digit.