Answer:
une entreprise a dépensé en tout 14 400e en 2001 pour l'entretien de ses voitures a. recopier et compléter le tableau ci-dessous. b. calculer la dépense moyenne pour l'entretien d'une voiture. c. les dépense d'entretien ont été représentées dans le diagramme circulaire ci-contre, mais la légende a été effacée. rétablir cette légende.
Step-by-step explanation:
Y = x^2 + 10x - 171
y = (x - 9)(x + 19)
x - 9= 0 x + 19 = 0
x = 9 x = -19
Answer B covers all requirements... the factored form is
<span>y= (x + 19)(x - 9) </span>
<span>and the zeros are -19 and 9</span>
Answer:
the Lateral SA is 84
The total is 1092.
Step-by-step explanation:
Answer:
a. The probability that a customer purchase none of these items is 0.49
b. The probability that a customer purchase exactly 1 of these items would be of 0.28
Step-by-step explanation:
a. In order to calculate the probability that a customer purchase none of these items we would have to make the following:
let A represents suit
B represents shirt
C represents tie
P(A) = 0.22
P(B) = 0.30
P(C) = 0.28
P(A∩B) = 0.11
P(C∩B) = 0.10
P(A∩C) = 0.14
P(A∩B∩C) = 0.06
Therefore, the probability that a customer purchase none of these items we would have to calculate the following:
1 - P(A∪B∪C)
P(A∪B∪C) =P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)
= 0.22+0.28+0.30-0.11-0.10-0.14+0.06
= 0.51
Hence, 1 - P(A∪B∪C) = 1-0.51 = 0.49
The probability that a customer purchase none of these items is 0.49
b.To calculate the probability that a customer purchase exactly 1 of these items we would have to make the following calculation:
= P(A∪B∪C) - ( P(A∩B) +P(C∩B) +P(A∩C) - 2 P(A ∩ B ∩ C))
=0.51 -0.23 = 0.28
The probability that a customer purchase exactly 1 of these items would be of 0.28
Answer:
r = 20
Step-by-step explanation:
-4 = r/20 - 5
-4 + 5 = r/20 - 5 + 5
1 = r/20
1 * 20 = r/20 * 20
r = 20