Step 1:
First, let's order the number from least to greatest.
A. -0.31
B. -0.33
C. -0.38
D. -0.29
We could see that A, B, and C's numbers are already from least to greatest, so all we have to do is to move -0.29 (D) up to the top, since -0.29 is the number with the lowest value.
C. -0.38
B. -0.33
A. -0.31
D. -0.29
Step 2:
Let's look at the four number lines. Remember that we already organized the numbers from least to greatest, so the order they go in on the number line is: C, B, A, and D. Since Line C and D Don't follow that rule, we know those are not our answers. Also on line B, C is on the left of -0.4, but C's value is less than -0.4, so B is wrong. We are left with line A.
Line A: C. -0.38, B. -0.33, A. -0.31, D. -0.29
Our answer: Line A
The answer is 2^12 = 4096.
Look at a tree diagram. With one spin there are two possible outcomes (branches). Every time you spin, each of the branches split into two more branches.
With 12 spins, first there are 2 branches, then 2*2, then 2*2*2, ... In the end it's 2^12
I'll leave the computation via R to you. The
are distributed uniformly on the intervals
, so that

each with mean/expectation
![E[W_i]=\displaystyle\int_{-\infty}^\infty wf_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac w{10i}\,\mathrm dw=5i](https://tex.z-dn.net/?f=E%5BW_i%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20wf_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%20w%7B10i%7D%5C%2C%5Cmathrm%20dw%3D5i)
and variance
![\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3DE%5B%28W_i-E%5BW_i%5D%29%5E2%5D%3DE%5B%7BW_i%7D%5E2%5D-E%5BW_i%5D%5E2)
We have
![E[{W_i}^2]=\displaystyle\int_{-\infty}^\infty w^2f_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac{w^2}{10i}\,\mathrm dw=\frac{100i^2}3](https://tex.z-dn.net/?f=E%5B%7BW_i%7D%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20w%5E2f_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%7Bw%5E2%7D%7B10i%7D%5C%2C%5Cmathrm%20dw%3D%5Cfrac%7B100i%5E2%7D3)
so that
![\mathrm{Var}[W_i]=\dfrac{25i^2}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3D%5Cdfrac%7B25i%5E2%7D3)
Now,
![E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30](https://tex.z-dn.net/?f=E%5BW_1%2BW_2%2BW_3%5D%3DE%5BW_1%5D%2BE%5BW_2%5D%2BE%5BW_3%5D%3D5%2B10%2B15%3D30)
and
![\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5Cleft%5B%5Cbig%28%28W_1%2BW_2%2BW_3%29-E%5BW_1%2BW_2%2BW_3%5D%5Cbig%29%5E2%5Cright%5D)
![\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5B%28W_1%2BW_2%2BW_3%29%5E2%5D-E%5BW_1%2BW_2%2BW_3%5D%5E2)
We have

![E[(W_1+W_2+W_3)^2]](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D)
![=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])](https://tex.z-dn.net/?f=%3DE%5B%7BW_1%7D%5E2%5D%2BE%5B%7BW_2%7D%5E2%5D%2BE%5B%7BW_3%7D%5E2%5D%2B2%28E%5BW_1%5DE%5BW_2%5D%2BE%5BW_1%5DE%5BW_3%5D%2BE%5BW_2%5DE%5BW_3%5D%29)
because
and
are independent when
, and so
![E[(W_1+W_2+W_3)^2]=\dfrac{100}3+\dfrac{400}3+300+2(50+75+150)=\dfrac{3050}3](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D%3D%5Cdfrac%7B100%7D3%2B%5Cdfrac%7B400%7D3%2B300%2B2%2850%2B75%2B150%29%3D%5Cdfrac%7B3050%7D3)
giving a variance of
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{3050}3-30^2=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B3050%7D3-30%5E2%3D%5Cdfrac%7B350%7D3)
and so the standard deviation is 
# # #
A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute
![\mathrm{Var}[W_1+W_2+W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D)
![=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])](https://tex.z-dn.net/?f=%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D%2B2%28%5Cmathrm%7BCov%7D%5BW_1%2CW_2%5D%2B%5Cmathrm%7BCov%7D%5BW_1%2CW_3%5D%2B%5Cmathrm%7BCov%7D%5BW_2%2CW_3%5D%29)
and since the
are independent, each covariance is 0. Then
![\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D)
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{25}3+\dfrac{100}3+75=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B25%7D3%2B%5Cdfrac%7B100%7D3%2B75%3D%5Cdfrac%7B350%7D3)
and take the square root to get the standard deviation.
Answer:
He needs to order
of carpet
Step-by-step explanation:
we know that

we have

Convert to 

9m
It said the sides are 25m (x2) and 9m(x2). The width of a rectangle are shorter than the length so 9m.