1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
6

Solve sinX+1=cos2x for interval of more or equal to 0 and less than 2pi

Mathematics
2 answers:
Igoryamba3 years ago
8 0

Answer:

Question 1: \sin(x)+1=\cos^2(x)

Answer to Question 1: x=0, \pi \frac{3\pi}{2}

Question 2: \sin(x)+1=\cos(2x)

Answer to Question 2: 0,\pi,\frac{7\pi}{6}, \frac{11\pi}{6}

Question:

I will answer the following two questions.

Condition: 0\le x

Question 1: \sin(x)+1=\cos^2(x)

Question 2: \sin(x)+1=\cos(2x)

Step-by-step explanation:

Question 1: \sin(x)+1=\cos^2(x)

Question 2: \sin(x)+1=\cos(2x)

Question 1:

\sin(x)+1=\cos^2(x)

I will use a Pythagorean Identity so that the equation is in terms of just one trig function, \sin(x).

Recall \sin^2(x)+\cos^2(x)=1.

This implies that \cos^2(x)=1-\sin^2(x). To get this equation from the one above I just subtracted \sin^2(x) on both sides.

So the equation we are starting with is:

\sin(x)+1=\cos^2(x)

I'm going to rewrite this with the Pythagorean Identity I just mentioned above:

\sin(x)+1=1-\sin^2(x)

This looks like a quadratic equation in terms of the variable: \sin(x).

I'm going to get everything to one side so one side is 0.

Subtracting 1 on both sides gives:

\sin(x)+1-1=1-\sin^2(x)-1

\sin(x)+0=1-1-\sin^2(x)

\sin(x)=0-\sin^2(x)

\sin(x)=-\sin^2(x)

Add \sin^2(x) on both sides:

\sin(x)+\sin^2(x)=-\sin^2(x)+\sin^2(x)

\sin(x)+\sin^2(x)=0

Now the left hand side contains terms that have a common factor of \sin(x) so I'm going to factor that out giving me:

\sin(x)[1+\sin(x)]=0

Now this equations implies the following:

\sin(x)=0 or 1+\sin(x)=0

\sin(x)=0 when the y-coordinate on the unit circle is 0. This happens at 0, \pi, or also at 2\pi. We do not want to include 2\pi because of the given restriction 0\le x.

We must also solve 1+\sin(x)=0.

Subtract 1 on both sides:

\sin(x)=-1

We are looking for when the y-coordinate is -1.

This happens at \frac{3\pi}{2} on the unit circle.

So the solutions to question 1 are 0,\pi,\frac{3\pi}{2}.

Question 2:

\sin(x)+1=\cos(2x)

So the objective at the beginning is pretty much the same. We want the same trig function.

\cos(2x)=\cos^2(x)-\sin^2(x) by double able identity for cosine.

\cos(2x)=(1-\sin^2(x))-\sin^2(x) by Pythagorean Identity.

\cos(2x)=1-2\sin^2(x) (simplifying the previous equation).

So let's again write in terms of the variable \sin(x).

\sin(x)+1=\cos(2x)

\sin(x)+1=1-2\sin^2(x)

Subtract 1 on both sides:

\sin(x)+1-1=1-2\sin^2(x)-1

\sin(x)+0=1-1-2\sin^2(x)

\sin(x)=0-2\sin^2(x)

\sin(x)=-2\sin^2(x)

Add 2\sin^2(x) on both sides:

\sin(x)+2\sin^2(x)=-2\sin^2(x)+2\sin^2(x)

\sin(x)+2\sin^2(x)=0

Now on the left hand side there are two terms with a common factor of \sin(x) so let's factor that out:

\sin(x)[1+2\sin(x)]=0

This implies \sin(x)=0 or 1+2\sin(x)=0.

The first equation was already solved in question 1. It was just at x=0.

Let's look at the other equation: 1+2\sin(x)=0.

Subtract 1 on both sides:

2\sin(x)=-1

Divide both sides by 2:

\sin(x)=\frac{-1}{2}

We are looking for when the y-coordinate on the unit circle is \frac{-1}{2}.

This happens at \frac{7\pi}{6} or also at \frac{11\pi}{6}.

So the solutions for this question 2 is 0,\pi,\frac{7\pi}{6}, \frac{11\pi}{6}.

stepan [7]3 years ago
7 0

Answer:

thats the first page and the second page

the answer is x {-π/2+1+2kπ}

x={-1/3+π/6+2kπ}

i hope it helps:)

You might be interested in
What is one plus four
wariber [46]

Answer:

1+4=5?

Step-by-step explanation:

5..?yeah...um..thx for the free points..^^

8 0
2 years ago
Read 2 more answers
Check image giving brainliest to first correct answer
Snowcat [4.5K]

Answer:

<em>7</em>

Step-by-step explanation:

<em>S</em><em>o</em><em>:</em><em>a</em><em>=</em><em>3</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>b</em><em>=</em><em>(</em><em>-</em><em>2</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>c</em><em>=</em><em>2</em>

<em>S</em><em>u</em><em>b</em><em>s</em><em>t</em><em>i</em><em>t</em><em>u</em><em>t</em><em>e</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>n</em><em>u</em><em>m</em><em>b</em><em>e</em><em>r</em><em>s</em><em> </em><em>i</em><em>n</em><em>t</em><em>o</em><em> </em><em>e</em><em>a</em><em>c</em><em>h</em><em> </em><em>letters</em>

<em> </em><em>s</em><em>o</em><em> </em><em>a</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>e</em><em>p</em><em>r</em><em>e</em><em>s</em><em>e</em><em>n</em><em>t</em><em>e</em><em>d</em><em> </em><em>b</em><em>y</em><em> </em><em>3</em><em>,</em><em>c</em><em> </em><em>b</em><em>y</em><em> </em><em>2</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>b</em><em> </em><em>-</em><em>2</em>

<em> </em><em>t</em><em>h</em><em>e</em><em>r</em><em>e</em><em>f</em><em>o</em><em>r</em><em>e</em><em> </em><em>g</em><em>i</em><em>v</em><em>i</em><em>n</em><em>g</em><em> </em><em>u</em><em>s</em><em>:</em><em> </em><em> </em><em> </em><em> </em><em>2</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>3</em><em>+</em><em>(</em><em>-</em><em>2</em><em>)</em><em>=</em><em>9</em><em>+</em><em>(</em><em>-</em><em>2</em><em>)</em><em>=</em><em>7</em>

7 0
2 years ago
Sonia finished the 200-meter dash in 26.12 seconds. Gladys finished the 200-meter dash 1.08 seconds
Schach [20]

Answer:

25.04

Step-by-step explanation:

26.12-1.08

=25.04

7 0
2 years ago
Read 2 more answers
How do I solve this math question? give full explanation using a formula. ​
lukranit [14]

Answer:

30 short cakes

Step-by-step explanation:

25ml = 10ml + 10ml +5ml

each 10ml of milk can make us 12 short cakes

we can two 10ml of milk (20ml) which can make us 24 short cakes.

but we have 25 ml of milk so how much does 5ml of milk give us if 10ml of milk gives us 12 short cakes ?

5ml makes us 6 short cakes. 24 short cakes plus 6 short cakes =30 shortcakes.

25ml of milk =10ml(12shortcakes)+ 10ml(12 shortcakes)+5ml(6 shortcakes)

6 0
3 years ago
Maritza esta vendiendo una bicicleta seminueva que ya no utiliza. Como le costo doscientos soles, incluido IGV, ahora la venderá
Sophie [7]

Answer:

Ok, primero, como lo deducimos gráficamente?

Sigamos estos pasos.

Dibujemos en una recta, la distancia entre el punto 0 soles y el precio de la bicicleta = 200 soles.

200 soles representa el 100%.

Ella lo quiere vender al 80% (o le quiere restar el 20%).

Entonces, con una regla, medir la distancia entre 0 soles y 200 soles.

Dividir esa cantidad por 10. (cada una de estas cantidades va a representar un 10%)

Multiplicar eso por 8.

Esa cantidad es el equivalente al 80% del precio de la bicicleta.

Abajo hay un dibujo donde se ve el método.

Una forma mas matemática de resolverlo es:

200 soles = 100%.

x soles = 80%

x es el precio al que ella va a vender la bicicleta:

Veamos el cociente de esas dos ecuaciones:

200/x = 100%/80%

x = 200*(80%/100%) = 160

Ella vendería la bicicleta en 160 soles.

8 0
3 years ago
Other questions:
  • What are equivelent froctions of. 7/12
    6·2 answers
  • What is the slope of the line?<br><br> A. 2/5<br> B. -2/5<br> C. 5/2<br> D. -5/2
    6·2 answers
  • -5(4m - 2) = -2/3 + 6m).​
    8·1 answer
  • Determine if 9 is rational or irrational and give a reason for your answer.
    13·2 answers
  • Anton's family drove 216 mi to the lake averaging 48 ​ mi/h ​ . On the return trip home they averaged 54 mi/h .
    8·1 answer
  • Inverse of m(x)=2x^2-6
    15·1 answer
  • Write the equation of the circle with a radius 7 and center (13, 15).<br><br><br> HELP ASAP!!!
    15·1 answer
  • If ori has 10 mangos and gives 20 mangos to lucy,how many mangos does ori need to give
    13·1 answer
  • Geometry - Triangle d) In the given figure, BE = EC and CE is the bisector of ZACB. Prove that ZBEC = ZACD. E B D С​
    8·1 answer
  • Graph y&lt; 1/3 c + 1/2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!