1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
13

A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest

. find the ratio of the particle masses

Physics
2 answers:
ZanzabumX [31]3 years ago
8 0
<span>1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.</span>
tatyana61 [14]3 years ago
3 0

The ratio of the particle masses is \boxed{\frac{1}{3}} or \boxed3 .

Further explain:

We have to calculate the ratio of the particle masses.

As we know, in the elastic collision between two masses the momentum and the energy both are conserved.

Here, the collision between the masses the head-on it means head to head.

For head on head collision the masses will travel parallel but opposite in the direction.

We have two masses one is heavier and another is lighter.

The mass of massive or heavier particle is {m_1}.  

The mass of the lighter particle is {m_2}.  

From the conservation of linear momentum total initial momentum is equal to the total final momentum.

Therefore,

\boxed{\left( {{m_1}v - {m_2}v} \right) = \left( {{m_1}{v_1} + {m_2}{v_2}} \right)}

Here, after the collision the massive particle comes into rest.

So, final expression will be,

\left( {{m_1}-{m_2}}\right)v={m_2}{v_2}                                   …… (1)

From the conservation of the energy,

Total kinetic energy before collision is equal to the total kinetic energy after collision.

Therefore,

\begin{aligned}\frac{1}{2}{m_1}{v^2}+\frac{1}{2}{m_2}{v^2}&=\frac{1}{2}{m_2}{\left( {{v_2}} \right)^2}\\{m_1}{v^2}+{m_2}{v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\left( {{m_1}+{m_2}}\right){v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\end{aligned} 

Simplify the above equation,

\begin{aligned}{m_2}{\left( {{v_2}} \right)^2}&=\frac{{\left( {{m_1}+{m_2}} \right){v^2}}}{{{m_2}}}\\{v_2}&=\left( {\sqrt {\frac{{\left( {{m_1}+{m_2}} \right)}}{{{m_2}}}} }\right)v\\\end{aligned}

 

Substitute the value of {v_2} in equation (1).

\begin{aligned}\left( {{m_1} - {m_2}} \right)v&={m_2}\left( {\sqrt {\frac{{\left( {{m_1} + {m_2}}\right)}}{{{m_2}}}} } \right)v \\\left( {{m_1} - {m_2}} \right)&=\sqrt {{m_2}\left( {{m_1} + {m_2}}\right)}\\{m_2}\left( {\frac{{{m_1}}}{{{m_2}}} - 1}\right)&={m_2}\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}\\\left( {\frac{{{m_1}}}{{{m_2}}}-1}\right)&=\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}}+ 1}\right)}\\\end{aligned}

 

Substitute x for\dfrac{{{m_1}}}{{{m_2}}} in above equation.

\left( {x - 1} \right)=\sqrt {\left( {x + 1} \right)}

 

Squaring both the sides in above equation,

\begin{aligned}{\left( {x - 1} \right)^2}&=\left( {x + 1}\right)\\{x^2} - 2x + 1&=x + 1\\{x^2}-3x&=0\\\end{aligned}

 

Taking x as a common in the above equation.

x\left( {x - 3} \right)=0

On solving above equation

We get,

x = 3

Replace the value of x  

\boxed{\frac{{{m_1}}}{{{m_2}}} = 3}

 

Or,

\boxed{\frac{{{m_2}}}{{{m_1}}} = \frac{1}{3}}  

Learn more:

1. Average kinetic energy: brainly.com/question/9078768

2. Broadcast wavelength of the radio station: brainly.com/question/9527365

3. Motion under force brainly.com/question/7031524.

Answer details:

Grade: Senior School

Subject: Physics

Chapter: Impulse and Momentum

Keywords:

Head on collision, two particles, equal speed, ratio of particle masses, momentum, conservation of momentum, energy, conservation of energy, masses, ratio.

You might be interested in
If a force of 32000N exerted pressure of 160N/m² , find the area on which the force acts.​
Alex17521 [72]

Answer: 200m^2

Explanation:

160N=32000N/x

x*160N=32000

x=200m^2

4 0
1 year ago
a block measures 3.5 cm long 2.8 cm wide and 1.6 cm deep. the density of the block 2.5 g/cm. calculate the volume of the block.
luda_lava [24]
Volume of a block can be found by: length × width × height. So:

3.5cm × 2.8cm × 1.6cm = 15.68cm^3
6 0
3 years ago
Read 2 more answers
MULTIPLE CHOICE
Juli2301 [7.4K]

Answer:

answers d

Explanation:

hopes its healp

8 0
2 years ago
Read 2 more answers
Differences between Light year and Cosmic year in two points
rusak2 [61]

Answer:

A cosmic year is 365.25 days, some times called a side real year and is just the time it takes for us to go round the sun once.

A light year is the distance light travels in a year. Now light travels at about 186,262 miles a Second! Which is not slow by any ones book.

An experiment was conducted just after Christmas a few years ago. Two girls were selected from the audience and went into two phone boxes a few feet apart. They could only hear each other via the phones. The phone call went to a ground station about 200 miles away, then up to a geostationary coms satellite, back to a ground station 1/3 of the way around the world, then repeated, with a third satellite before being sent from another ground station back to London and the other phone box. We the audience could hear both sides of the conversation from both boxes. And could hear the delay between sending and receiving. So even at the speed of light, there was about 1.5 seconds of delay. So because distances in space are so vast that saying a star is x millions of miles away causes problems, you run out of zero’s! So our nearest other star is about 4.5 light years away. Our sun (our nearest start) is about 8 light minuets away. Varies slightly as our orbit is not 100% cirular.

I HOPE THIS IS HELPFUL.

3 0
3 years ago
Calculate the kinetic energy in joules of a 1200 kg automobile moving at 18 m/s .
vodka [1.7K]

Answer:

194,400 joules of kinetic energy.

Explanation:

Remember that to calculate the Kinetic energy you need to use the next formula:

Ke=\frac{1}{2}Mass*Velocity^2

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

Ke=\frac{1}{2}Mass*Velocity^2\\Ke=\frac{1}{2}1200kg*(18m/s)^2\\Ke=194,400 joules

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A car travels at a speed of 30 mph. how far does the car travel in 2 hours
    6·1 answer
  • If the resulting trajectory of the charged particle is a circle, what is ω, the angular frequency of the circular motion?
    9·1 answer
  • A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
    10·1 answer
  • Also need help with 20 &amp; 21 please
    13·2 answers
  • If energy (E),Velocity (v) and force (f) are taken as fundamental quantities ,then what are the dimensions of mass??
    11·1 answer
  • 2. Which of the following is an example of work being done on an object? A prism scatters ultraviolet light into visible light.
    10·2 answers
  • The unit of power is<br>Denved<br>Unit? Why​
    15·1 answer
  • Answer question quick
    14·1 answer
  • Explain how energy that comes from the outside of the Earth system drives the flow of water on surface currents.
    8·1 answer
  • If the light bulb in the lava lamp had a lower wattage, what changes would you expect to see in the lava lamp. what if the lava
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!