1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
13

A head-on, elastic collision between two particles with equal initial speed v leaves the more massive particle (mass m1) at rest

. find the ratio of the particle masses

Physics
2 answers:
ZanzabumX [31]3 years ago
8 0
<span>1/3 The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r" The equation for kinetic energy is E = 1/2MV^2. So the energy for the system prior to collision is 0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5 The energy after the collision is 0.5rv^2 Setting the two equations equal to each other 0.5r + 0.5 = 0.5rv^2 r + 1 = rv^2 (r + 1)/r = v^2 sqrt((r + 1)/r) = v The momentum prior to collision is -1r + 1 Momentum after collision is rv Setting the equations equal to each other rv = -1r + 1 rv +1r = 1 r(v+1) = 1 Now we have 2 equations with 2 unknowns. sqrt((r + 1)/r) = v r(v+1) = 1 Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r. r(sqrt((r + 1)/r)+1) = 1 r*sqrt((r + 1)/r) + r = 1 r*sqrt(1+1/r) + r = 1 r*sqrt(1+1/r) = 1 - r r^2*(1+1/r) = 1 - 2r + r^2 r^2 + r = 1 - 2r + r^2 r = 1 - 2r 3r = 1 r = 1/3 So the less massive particle is 1/3 the mass of the more massive particle.</span>
tatyana61 [14]3 years ago
3 0

The ratio of the particle masses is \boxed{\frac{1}{3}} or \boxed3 .

Further explain:

We have to calculate the ratio of the particle masses.

As we know, in the elastic collision between two masses the momentum and the energy both are conserved.

Here, the collision between the masses the head-on it means head to head.

For head on head collision the masses will travel parallel but opposite in the direction.

We have two masses one is heavier and another is lighter.

The mass of massive or heavier particle is {m_1}.  

The mass of the lighter particle is {m_2}.  

From the conservation of linear momentum total initial momentum is equal to the total final momentum.

Therefore,

\boxed{\left( {{m_1}v - {m_2}v} \right) = \left( {{m_1}{v_1} + {m_2}{v_2}} \right)}

Here, after the collision the massive particle comes into rest.

So, final expression will be,

\left( {{m_1}-{m_2}}\right)v={m_2}{v_2}                                   …… (1)

From the conservation of the energy,

Total kinetic energy before collision is equal to the total kinetic energy after collision.

Therefore,

\begin{aligned}\frac{1}{2}{m_1}{v^2}+\frac{1}{2}{m_2}{v^2}&=\frac{1}{2}{m_2}{\left( {{v_2}} \right)^2}\\{m_1}{v^2}+{m_2}{v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\left( {{m_1}+{m_2}}\right){v^2}&={m_2}{\left( {{v_2}}\right)^2}\\\end{aligned} 

Simplify the above equation,

\begin{aligned}{m_2}{\left( {{v_2}} \right)^2}&=\frac{{\left( {{m_1}+{m_2}} \right){v^2}}}{{{m_2}}}\\{v_2}&=\left( {\sqrt {\frac{{\left( {{m_1}+{m_2}} \right)}}{{{m_2}}}} }\right)v\\\end{aligned}

 

Substitute the value of {v_2} in equation (1).

\begin{aligned}\left( {{m_1} - {m_2}} \right)v&={m_2}\left( {\sqrt {\frac{{\left( {{m_1} + {m_2}}\right)}}{{{m_2}}}} } \right)v \\\left( {{m_1} - {m_2}} \right)&=\sqrt {{m_2}\left( {{m_1} + {m_2}}\right)}\\{m_2}\left( {\frac{{{m_1}}}{{{m_2}}} - 1}\right)&={m_2}\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}} + 1} \right)}\\\left( {\frac{{{m_1}}}{{{m_2}}}-1}\right)&=\sqrt {\left( {\frac{{{m_1}}}{{{m_2}}}+ 1}\right)}\\\end{aligned}

 

Substitute x for\dfrac{{{m_1}}}{{{m_2}}} in above equation.

\left( {x - 1} \right)=\sqrt {\left( {x + 1} \right)}

 

Squaring both the sides in above equation,

\begin{aligned}{\left( {x - 1} \right)^2}&=\left( {x + 1}\right)\\{x^2} - 2x + 1&=x + 1\\{x^2}-3x&=0\\\end{aligned}

 

Taking x as a common in the above equation.

x\left( {x - 3} \right)=0

On solving above equation

We get,

x = 3

Replace the value of x  

\boxed{\frac{{{m_1}}}{{{m_2}}} = 3}

 

Or,

\boxed{\frac{{{m_2}}}{{{m_1}}} = \frac{1}{3}}  

Learn more:

1. Average kinetic energy: brainly.com/question/9078768

2. Broadcast wavelength of the radio station: brainly.com/question/9527365

3. Motion under force brainly.com/question/7031524.

Answer details:

Grade: Senior School

Subject: Physics

Chapter: Impulse and Momentum

Keywords:

Head on collision, two particles, equal speed, ratio of particle masses, momentum, conservation of momentum, energy, conservation of energy, masses, ratio.

You might be interested in
Which scientist described an atom made of a solid positively charged substance with electrons dispersed throughout it?.
swat32

The scientist that described an atom made a solid positively charged substance with electrons dispersed throughout it was: Ernest Rutherford

In 1911 Ernest Rutherford proposed his atomic model in which he considered the atom as a positively, densely charged center called a nucleus in which the electrons circulate around the core with a negative charge.

<h3>What is an atom?</h3>

The atom is the smallest part of the composition of matter, it is indivisible and is composed of a nucleus that has protons and neutrons, and around the nucleus there are the electrons.

Learn more about the atom at: brainly.com/question/17545314

#SPJ4

3 0
2 years ago
PLS HELP WITH THIS FOR BRAINLIST IF ITS RIGHT
Zolol [24]

Answer:

the first one is Primary

the second one I think it's Mature but I don't know

5 0
3 years ago
for any object suspended by any number of ropes, wires, or chains, how is the total amount of tension (tension in each rope adde
Sveta_85 [38]

Answer:

To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.

Explanation:

The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]

For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.

As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.

Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.

7 0
3 years ago
What is the velocity of a 2000 kg truck with a momentum of 48,000 kg•m/s?
Goshia [24]

Answer:

24

Explanation:

momentum= mass* velocity

velocity= momentum/ mass

5 0
3 years ago
The first electric generators used direct current, so they needed to be reversed manually on a regular basis in order to work pr
djyliett [7]
Could I see the questions
4 0
3 years ago
Other questions:
  • Chemists use a wide array of techniques for determining the exact composition and structure of a compound. One of the most robus
    10·1 answer
  • If a gas has an absolute pressure of 319 kpa. It gage pressure is A) 419kpa B)219 kpa C) 439 kpa D)199 kpa
    5·1 answer
  • All of the following are possible sources of error in a scientific investigation except for
    7·2 answers
  • Lacie kicks a football from ground level at a velocity of 13.9 m/s and at an angle of 25.0° to the ground. How far will the foot
    7·2 answers
  • If the mass of a material is 42 grams and the volume of the material is 15 cm^3, what would the density of the material be?
    8·1 answer
  • What is the number at the end of an isotope’s name?
    6·1 answer
  • Explain how the forces need to change so the aeroplane can land
    8·1 answer
  • V=d/t
    9·2 answers
  • 1. The choice of materials for an exciting playground slide should __________.
    14·2 answers
  • Please help me! As quickly as possible
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!