I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.
The sun is the center of the solar system which is surrounded by the nine planets and they tend to orbit the sun in concentric circles with the sun as the center.
<h3>What is the solar system?</h3>
The term solar system has to do with the arrangement of the sun and the planets. The sun lies at the focus of the solar system. Now we know that there are nine planets that orbit around the sun. The distance between the planets and the sun depends on their relative proximity to each other.
Thus, the sun is the center of the solar system which is surrounded by the nine planets and they tend to orbit the sun in concentric circles with the sun as the center.
Learn more about solar system:brainly.com/question/12075871
#SPJ1