1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
3 years ago
14

How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t

hat larger fire engine mounted pumps can deliver from 90-300 gallons per minute, and hoses can be as wide as 30 cm diameter What alternative estimate would that info give you?)
Engineering
1 answer:
Mrac [35]3 years ago
7 0

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

You might be interested in
25 In differential aeration corrosion, rich oxygenated parts are
sleet_krkn [62]

Answer:what are you trying to say

Explanation:

6 0
3 years ago
5. Which of the following is false about onStep?
katovenus [111]

The false statement about onStep is: B. The default number of steps per second is 30.

<h3>What is an onStep?</h3>

An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.

<h3>The characteristics of an onStep.</h3>

In Engineering, some of the characteristics that are associated with an onStep include the following:

  • The onStep function can be called without user input.
  • It can be used to animate shapes without user input.
  • It only runs a certain number of times.

In conclusion, the default number of steps per second for onStep isn't 30.

Read more on onStep here: brainly.com/question/25619349

7 0
2 years ago
Socket Programming: (30 points) Use Python TCP socket to implement an application with client-server architecture. In this appli
ololo11 [35]

Answer:

Explanation:

Run the code given in text file following instructions.

Download txt
8 0
3 years ago
21. Explique claramente como el fenotipo es el que favorece o desfavorece los resultados productivos obtenidos tanto en las expl
Montano1993 [528]
Los sistemas de producción pecuaria, son considerados como la estrategia social, económica y cultural más apropiada para mantener el bienestar de las comunidades, debido a que es la única actividad que puede simultáneamente proveer seguridad en el sustento diario, conservar ecosistemas, promover la conservación de la
6 0
3 years ago
A 50 Hz, four pole turbo-generator rated 100 MVA, 11 kV has an inertia constant of 8.0 MJ/MVA. (a) Find the stored energy in the
raketka [301]

Given Information:

Frequency = f = 60 Hz

Complex rated power = G = 100 MVA

Intertia constant = H = 8 MJ/MVA

Mechanical power = Pmech = 80 MW

Electrical power = Pelec = 50 MW

Number of poles = P = 4

No. of cycles = 10

Required Information:

(a) stored energy = ?

(b) rotor acceleration = ?

(c) change in torque angle = ?

(c) rotor speed = ?

Answer:

(a) stored energy = 800 Mj

(b) rotor acceleration = 337.46 elec deg/s²

(c) change in torque angle (in elec deg) = 6.75 elec deg

(c) change in torque angle (in rmp/s) = 28.12 rpm/s

(c) rotor speed = 1505.62 rpm

Explanation:

(a) Find the stored energy in the rotor at synchronous speed.

The stored energy is given by

E = G \times H

Where G represents complex rated power and H is the inertia constant of turbo-generator.

E = 100 \times 8 \\\\E = 800 \: MJ

(b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses.

The rotor acceleration is given by

$ P_a = P_{mech} - P_{elec} = M \frac{d^2 \delta}{dt^2}  $

Where M is given by

$ M = \frac{E}{180 \times f} $

$ M = \frac{800}{180 \times 50} $

M = 0.0889 \: MJ \cdot s/ elec \: \: deg

So, the rotor acceleration is

$ P_a = 80 - 50 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$  30 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$   \frac{d^2 \delta}{dt^2} = \frac{30}{0.0889}  $

$   \frac{d^2 \delta}{dt^2} = 337.46 \:\: elec \: deg/s^2 $

(c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.

The change in torque angle is given by

$ \Delta  \delta = \frac{1}{2} \cdot \frac{d^2 \delta}{dt^2}\cdot (t)^2 $

Where t is given by

1 \: cycle = 1/f = 1/50 \\\\10 \: cycles = 10/50 = 0.2  \\\\t = 0.2 \: sec

So,

$ \Delta  \delta = \frac{1}{2} \cdot 337.46 \cdot (0.2)^2 $

$ \Delta  \delta = 6.75 \: elec \: deg

The change in torque in rpm/s is given by

$ \Delta  \delta = \frac{337.46 \cdot 60}{2 \cdot 360\circ  }   $

$ \Delta  \delta =28.12 \: \: rpm/s $

The rotor speed in revolutions per minute at the end of this period (10 cycles) is given by

$ Rotor \: speed = \frac{120 \cdot f}{P}  + (\Delta  \delta)\cdot t  $

Where P is the number of poles of the turbo-generator.

$ Rotor \: speed = \frac{120 \cdot 50}{4}  + (28.12)\cdot 0.2  $

$ Rotor \: speed = 1500  + 5.62  $

$ Rotor \: speed = 1505.62 \:\: rpm

4 0
3 years ago
Other questions:
  • How does a carburetor work?
    7·1 answer
  • Using phasors, the value of 37 sin 50t + 30 cos(50t – 45°) is _________ cos(50t+(_____°)). Please report your answer so the magn
    5·1 answer
  • Which traditional subject is part of construction management or construction science syllabi?
    5·1 answer
  • I'm bored. I want to talk to you humans! weird. STUPID QUARANTINE!!! So. What are yall up to?
    12·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Build a 32-bit accumulator circuit. The circuit features a control signal inc and enable input en. If en is 1 and inc is 1, the
    13·1 answer
  • What is the angle of the input
    12·1 answer
  • The displacement of a certain object is described by y(t) = 23 sin 5t, where t is measured in seconds. Compute its period and it
    9·1 answer
  • true or false modeling is making predictions about future data points not associated with your equation? Explain why.​
    12·1 answer
  • For some metal alloy, the following engineering stresses produce the corresponding engineering plastic strains prior to necking.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!