Answer:
The radius of a wind turbine is 691.1 ft
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Explanation:
Given;
power generation potential (PGP) = 1000 kW
Wind speed = 5 mph = 2.2352 m/s
Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³
Radius of the wind turbine r = ?
Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²
Wind energy per unit mass of air = 2.517 J/kg
PGP = mass flow rate * energy per unit mass
PGP = ρ*A*V*e

r = 210.64 m = 691.1 ft
Thus, the radius of a wind turbine is 691.1 ft
PGP = CVᵃ
For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)
Let C = 0.4
PGP = Cvᵃ
take log of both sides
ln(PGP) = a*ln(CV)
a = ln(PGP)/ln(CV)
a = ln(1000)/ln(0.4 *2.2352) = 7.73
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Answer:
2.135
Explanation:
Lets make use of these variables
Ox 16.5 kpsi, and Oy --14,5 kpsi
To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.
Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.
Please refer to attachment for the step by step solution.
Answer:
me you same I didn't understand good luck
Answer:
If analyzed by volume capacity, more trips are needed to fill the space, thus the required trips are 288
Explanation:
a) By volume.
The shrinkage factor is:

The volume at loose is:

If the Herrywampus has a capacity of 30 cubic yard:

b) By weight
The swell factor in terms of percent swell is equal to:


The weight of backfill is:

The Herrywampus has a capacity of 40 ton:

If analyzed by volume capacity, more trips are needed to fill the space, thus the required trips are 288