1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
8

Without motorcycle riders are at risk of severe injury in a crash ?

Engineering
2 answers:
astra-53 [7]3 years ago
6 0
The answer is A
Proper protection
nekit [7.7K]3 years ago
5 0

Answer:

The correct option is;

A. proper protection

Explanation:

Motorcycle riders ride the motorcycle while at some level of speed while  having the entire body exposed to be a major part of any collision.

Injuries sustained from motorcycle accidents are several times more severe than injuries sustained by occupants of a car that is fully protected by the metallic panel in the same and even more serious accident scenarios

Hence, motorcycle riders require adequate protection by putting on available motorcyclist safety gear

Therefore, to reduce the risk of severe injury n a crash, motorcycle riders require proper protection.

You might be interested in
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of "84" m3/min and exits at 12
Nina [5.8K]

Answer:

W = - 184.8 kW

Explanation:

Given data:

P_1 = 1.05 bar

T_1 = 300K

\dot V_1 = 84 m^3/min

P_2 = 12 bar

T_2 = 400 K

We know that work is done as

W = - [ Q + \dor m[h_2 - h_1]]

forP_1 = 1.05 bar,  T_1 = 300K

density of air is 1.22 kg/m^3 and h_1 = 300 kJ/kg

for P_2 = 12 bar, T_2 = 400 K

h_2 = 400 kj/kg

\dot m = \rho \times \dor v_1 = 1.22 \frac{84}{60} =1.708 kg/s

W = -[14 + 1.708[400-300]]

W = - 184.8 kW

8 0
3 years ago
Select the correct answer. Felix aspires to be an engineer working for the government. What credentials will Felix require to ap
Aneli [31]

Answer:

OB

Explanation:

5 0
3 years ago
Atmospheric air at 25 °C and 8 m/s flows over both surfaces of an isothermal (179C) flat plate that is 2.75m long. Determine the
vekshin1

Answer:

Re=100,000⇒Q=275.25 \frac{W}{m^2}

Re=500,000⇒Q=1,757.77\frac{W}{m^2}

Re=1,000,000⇒Q=3060.36 \frac{W}{m^2}

Explanation:

Given:

For air      T_∞=25°C  ,V=8 m/s

  For surface T_s=179°C

     L=2.75 m    ,b=3 m

We know that for flat plate

Re⇒Laminar flow

Re>30\times10^5⇒Turbulent flow

<u> Take Re=100,000:</u>

 So this is case of laminar flow

  Nu=0.664Re^{\frac{1}{2}}Pr^{\frac{1}{3}}

From standard air property table at 25°C

  Pr= is 0.71  ,K=26.24\times 10^{-3}

So    Nu=0.664\times 100,000^{\frac{1}{2}}\times 0.71^{\frac{1}{3}}

Nu=187.32   (\dfrac{hL}{K_{air}})

187.32=\dfrac{h\times2.75}{26.24\times 10^{-3}}

     ⇒h=1.78\frac{W}{m^2-K}

heat transfer rate =h(T_∞-T_s)

                           =275.25 \frac{W}{m^2}

<u> Take Re=500,000:</u>

So this is case of turbulent flow

  Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}

Nu=0.037\times 500,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}

Nu=1196.18  ⇒h=11.14 \frac{W}{m^2-K}

heat transfer rate =h(T_∞-T_s)

                             =11.14(179-25)

                           = 1,757.77\frac{W}{m^2}

<u> Take Re=1,000,000:</u>

So this is case of turbulent flow

  Nu=0.037Re^{\frac{4}{5}}Pr^{\frac{1}{3}}

Nu=0.037\times 1,000,000^{\frac{4}{5}}\times 0.71^{\frac{1}{3}}

Nu=2082.6  ⇒h=19.87 \frac{W}{m^2-K}

heat transfer rate =h(T_∞-T_s)

                             =19.87(179-25)

                           = 3060.36 \frac{W}{m^2}

7 0
3 years ago
A car C is traveling up a spiral ramp at a constant and traveling as fast as it can without losing traction. The grade of the ra
arsen [322]

Answer:

26.1 ft/s²

Explanation:

See attached pictures for detailed explanation.

4 0
3 years ago
A rigid tank having 25 m3 volume initially contains air having a density of 1.25 kg/m3, then more air is supplied to the tank fr
Hoochie [10]

Answer:

\Delta m = 102.25\,kg

Explanation:

The mass inside the rigid tank before the high pressure stream enters is:

m_{o} = \rho_{air}\cdot V_{tank}

m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{o} = 31.25\,kg

The final mass inside the rigid tank is:

m_{f} = \rho \cdot V_{tank}

m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{f}= 133.5\,kg

The supplied air mass is:

\Delta m = m_{f}-m_{o}

\Delta m = 133.5\,kg-31.25\,kg

\Delta m = 102.25\,kg

4 0
3 years ago
Other questions:
  • What are four types of biomass that can be converted into alternative fuels
    9·1 answer
  • The products of combustion from burner are routed to an industrial application through a thin-walled metallic duct of diameter D
    6·1 answer
  • Two synchronous motors having subtransient reactances of 0.8 and 0.25 p.u., respectively, on a base of 500 V 2 MVA are connected
    13·1 answer
  • The air inside a chamber at T[infinity],i = 50 °C is heated convectively with hᵢ= 20 W/m² K by a 200-mm-thick wall having a ther
    6·1 answer
  • a digital multimeter is set to read dc volts on the 4 volt scale the meter leads are connected to a 12 volt battery what will th
    14·2 answers
  • When block C is in position xC = 0.8 m, its speed is 1.5 m/s to the right. Find the velocity of block A at this instant. Note th
    14·1 answer
  • Technician A says that a tie rod end is a ball and socket joint similar in construction to a ball joint. Technician B says that
    6·2 answers
  • What is an advantage of a nuclear-fission reactor?.
    11·1 answer
  • Find the differential and evaluate for the given x and dx: y=sin2xx,x=π,dx=0.25
    13·1 answer
  • Describe the risks associated with their working environment (such as the tools, materials and equipment that they use, spillage
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!