1) (C2H5)2CBrCH2CH3 is the answer
explaiation:-
so when HBr is added to an alkene , according to the Markonicoff's rule ...H atoms are bonded to the C containing the most amount of H and Br is added to the other C.
2) Just add alkoholic KOH∆
Answer:
Percent composition of the solution is 26 % of sucrose and 74 % of water
Explanation:
Percent composition is the mass of solute, either of solvent in 100 g of solution.
Mass of solution = Mass of solvent + Mass of solute
Mass of solute = 35 g
Mass of solvent = 100 g
As we know, water density = 1g/mL
So 1g/mL . 100 mL = 100 g
35 g + 100 g = 135 g → Mass of solution
(Mass of solute / Mass of solution) . 100 =
(35 g / 135 g) . 100 = 26 %
(Mass of solvent / Mass of solution) . 100 =
(100 g / 135 g) . 100 = 74 %
Answer:
2NaCl+H2SO4-->Na2SO4+2HCl
Explanation:
There are two Na on the right, so put a 2 in front of NaCl on the left. This makes 3 Cl also, so put a 2 in front of HCl on the right. There are already 2 H on the left, so the equation is balanced.
Answer:
2.99 M
Explanation:
In order to solve this problem we need to keep in mind the definition of molarity:
- Molarity = moles of solute / liters of solution
In order to calculate the moles of solute, we <u>convert 125.6 g of NaF into moles</u> using its <em>molar mass</em>:
- 125.6 g NaF ÷ 42 g/mol = 2.99 mol NaF
As the volume is already given, we can proceed to <em>calculate the molarity</em>:
- Molarity = 2.99 mol / 1.00 L = 2.99 M