Answer:
1.25 m
Explanation:
From the question given above, the following data were obtained:
Force ratio = 2.5
Distance of load from the fulcrum = 0.5 m
Distance of effort =.?
The distance of the effort from the fulcrum can be obtained as illustrated below:
Force ratio = Distance of effort / Distance of load
2.5 = Distance of effort / 0.5
Cross multiply
Distance of effort = 2.5 × 0.5
Distance of effort = 1.25 m
Therefore, the distance of the effort from the fulcrum is 1.25 m
Answer:
Image formed by a <u>convex mirror</u> is always <u>virtual and erect</u>. When an object is placed at infinity, virtual image is formed at focus and the size of the image is <u>smaller</u>.
<h2>도움이되기를 바랍니다!</h2>
We can solve the problem by using Snell's law, which states

where

is the refractive index of the first medium

is the angle of incidence

is the refractive index of the second medium

is the angle of refraction
In our problem,

(refractive index of air),

and

(refractive index of carbon disulfide), therefore we can re-arrange the previous equation to calculate the angle of refraction:

From which we find
<em>The gravitational force between two objects is inversely proportional to the square of the distance between the two objects.</em>
The gravitational force between two objects is proportional to the product of the masses of the two objects.
The gravitational force between two objects is proportional to the square of the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is proportional to the distance between the two objects. <em> no</em>
The gravitational force between two objects is inversely proportional to the product of the masses of the two objects. <em> no</em>
Answer:
Gate control theory of pain
Explanation:
The gate control theory of pain sates that non-painful input closes the nerve gates to painful input, which prevents pain sensation from traveling to the central nervous system (brain).
Therefore, the idea that large fibers in the sensory nerves can prevent impulses from reaching the brain and thus prevent the sensation of pain is part of the gate control theory of pain.