Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 
Answer:
A. False, frequency can increase or decrease wavelength.
For example: a high frequency would mean there are shorter wavelengths that occur in a period. Meanwhile, a low frequency would indicate that the wavelengths are longer and in longer periods.
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
Answer:
The Apollo program or Project Apollo was a series of human spaceflight missions undertaken by the u.S. Devoted to the goal of landing a man on the moon and returning him to earth safely.
Explanation:
Project Apollo or Apollo program was the spaceflight program carried out by the United States of America during the years 1961-1972 using the Apollo spacecraft. This project's main goal was to land a man on the Moon and to safely return him to Earth. This goal was accomplished with the Apollo 11 moon-landing mission on July 20, 1969, when an Apollo Lunar Module (LM) landed on the Moon's surface and the astronauts Neil Armstrong and Buzz Aldrin walked on the lunar surface while Michael Collins stayed in the command and service module (CSM) in the lunar orbit. On July 24, all three astronauts landed safely on Earth.
This project included three unmanned test flights (Apollo 4 through Apollo 6) and eleven manned flights (Apollo 7 through Apollo 17). All these spaceflight missions were carried out by NASA (National Aeronautics and Space Administration) and all were launched from the Kennedy Space Center, Florida.
Answer:
404K
Explanation:
Data given, Kinetic Energy.K.E=8.37*10^-21J
Note: as the temperature of a is increase, the rate of random movement will increase, hence leading to more collision per unit time. Hence we can say that the relationship between the kinetic energy and the temperature is a direct variation.
This relationship can be expressed as

where K is a constant of value 1.38*10^-23
Hence if we substitute the values, we arrive at

converting to degree we have 