The hang time of the student is 0.64 seconds, and he must leave the ground with a speed of 3.13 m/s
Why?
To solve the problem, we must consider the vertical height reached by the student as max height.
We can use the following equations to solve the problem:
<u>Initial speed calculations:</u>

At max height, the speed tends to zero.
So, calculating, we have:
<u>
</u>
<u>Hang time calculations:</u>
We must remember that the total hang time is equal to the time going up plus the time going down, and both of them are equal,so, calculating the time going down, we have have:

Then, for the total hang time, we have:

Have a nice day!
When light strikes the inside surface of a smooth, curved mirror the light will bounce back toward a single spot. The reason it does this is because mirrors reflect light and other objects.
Hope this helps! Please make my answer the brainliest!
Answer:

Explanation:
R = Horizontal range of projectile = 75 m
v = Velocity of projectile = 37 m/s
g = Acceleration due to gravity = 
Horizontal range is given by

The angle at which the arrow is to be released is
.
Answer:
t ’=
, v_r = 1 m/s t ’= 547.19 s
Explanation:
This is a relative velocity exercise in a dimesion, since the river and the boat are going in the same direction.
By the time the boat goes up the river
v_b - v_r = d / t
By the time the boat goes down the river
v_b + v_r = d '/ t'
let's subtract the equations
2 v_r = d ’/ t’ - d / t
d ’/ t’ = 2v_r + d / t
In the exercise they tell us
d = 1.22 +1.45 = 2.67 km= 2.67 10³ m
d ’= 1.45 km= 1.45 1.³ m
at time t = 69.1 min (60 s / 1min) = 4146 s
the speed of river is v_r
t ’=
t ’=
In order to complete the calculation, we must assume a river speed
v_r = 1 m / s
let's calculate
t ’=
t ’= 547.19 s