Answer:
Explanation:
The genes in DNA encode protein molecules, which are the "workhorses" of the cell, carrying out all the functions necessary for life. For example, enzymes, including those that metabolize nutrients and synthesize new cellular constituents, as well as DNA polymerases and other enzymes that make copies of DNA during cell division, are all proteins.
In the simplest sense, expressing a gene means manufacturing its corresponding protein, and this multilayered process has two major steps. In the first step, the information in DNA is transferred to a messenger RNA (mRNA) molecule by way of a process called transcription. During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA (Figure 1). The resulting mRNA is a single-stranded copy of the gene, which next must be translated into a protein molecule.
During translation, which is the second major step in gene expression, the mRNA is "read" according to the genetic code, which relates the DNA sequence to the amino acid sequence in proteins (Figure 2). Each group of three bases in mRNA constitutes a codon, and each codon specifies a particular amino acid (hence, it is a triplet code). The mRNA sequence is thus used as a template to assemble—in order—the chain of amino acids that form a protein
But where does translation take place within a cell? What individual substeps are a part of this process? And does translation differ between prokaryotes and eukaryotes? The answers to questions such as these reveal a great deal about the essential similarities between all species.
Answer:
Hydrogen Bonds Make Water Sticky
Explanation:
Hydrogen bonds form when hydrogen atoms covalently bonded to nitrogen (N), oxygen (O), or fluorine (F) in the form of covalent compounds such as ammonia (NH3), water (H2O) and hydrogen fluoride gas (HF). In these molecules, the hydrogen atoms do not pull as strongly on the shared electrons as the N, O, or F atoms. Therefore, the molecules are polar; the hydrogen atoms become positively charged and are able to form hydrogen bonds to negative ions or negatively charged parts of other molecules (such as the N, O, and F atoms that become negatively charged in these compounds).
Answer:
ATP provides the energy needed for many essential processes in organisms and cells. These include intracellular signaling, DNA and RNA synthesis, Purinergic signaling, synaptic signaling, active transport, and muscle contraction.
Explanation:
Answer:
They are called Mygalomorphs.
Explanation:
<h2><u><em>
Brainliest Please!</em></u></h2>
Answer:
Carbohydrates may be defined as the polymers of the sugars and one of the most important biomolecule of the living organisms. Carbohydrates plays an important structural and functional role.
Carbohydrates are always present on the exoplasmic surface of the plasma membrane. The are present in the association with the proteins and lipids as glycoproteins and glycolipids. These carbohydrates acts as the signaling molecule that display information on cell surface.
Read more on Brainly.com - brainly.com/question/13761887#readmore