Answer:

Explanation:
Given
Required
Calculate the number of moles
We'll apply the following formula to solve this question

Where

The above equation is an illustration of the ideal gas law
Substitute values for p, V, R and T in:




<em>Hence, there are 243.605 moles</em>
Answer:
N₂ = 6.022 × 10²³ molecules
H₂ = 18.066 × 10²³ molecules
NH₃ = 12.044 × 10²³ molecules
Explanation:
Chemical equation;
N₂ + 3H₂ → 2NH₃
It can be seen that there are one mole of nitrogen three mole of hydrogen and two moles of ammonia are present in this equation. The number of molecules of reactant and product would be calculated by using Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
Number of molecules of nitrogen gas:
1 mol = 6.022 × 10²³ molecules
Number of molecules of hydrogen:
3 mol × 6.022 × 10²³ molecules/ 1 mol
18.066 × 10²³ molecules
Number of molecules of ammonia:
2 mol × 6.022 × 10²³ molecules/ 1 mol
12.044 × 10²³ molecules
Answer:
Saturated = The solution cannot dissolve any more solute at a given temperature
2) Unsaturated = solution can dissolve more solute at a given temperature.
3) Supersaturated = Solution which has more solute than its saturated solution
Explanation:
<h2>
<em><u>Mark </u></em><em><u>me </u></em><em><u>brainlist</u></em></h2>