Answer with Explanation:
We are given that
Weight of an ore sample=17.5 N
Tension in the cord=11.2 N
We have to find the total volume and the density of the sample.
We know that
Tension, T=
=buoyancy force
T=Tension force
W=Weight
By using the formula

N

Where
=Volume of object
=Density of water
=Acceleration due to gravity
Substitute the values then we get


Volume of sample=
Density of sample,
Where mass of ore sample=1.79 kg
Substitute the values then, we get

Density of the sample=
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Answer:
A. Zero
Explanation:
Given data,
The charge of the test charge, q = 1 C
The distance the charge moved against the filed of intensity, x = 30 cm
= 0.3 m
The electric field intensity, E = 50 N/C
The energy stored in the charge at 0.3 m is given by the formula,
V = k q/r
Where,
= 9 x 10⁹ Nm²C⁻²
The charge is moved from the potential V₁ to V₂ at 30 cm
Substituting the given values in the above equation
V₁ = 9 x 10⁹ x 30 / 0.3
= 1.5 x 10¹² J
And,
V₂ = 1.5 x 10¹² J
The energy stored in it is,
W = V₂ - V₁
= 0
Hence, the energy stored in the charge is, W = 0
Answer:
1.85c
Explanation:
a photon moves at c, the electron is moving at 0.85c, and since they are moving in opposing directions, the relative speed would be 1.85c
Answer:
The required angular speed ω of an ultra-centrifuge is:
ω = 18074 rad/sec
Explanation:
Given that:
Radius = r = 1.8 cm
Acceleration due to g = a = 6.0 x 10⁵ g
Sol:
We know that
Angular Acceleration = Angular Radius x Speed²
a = r x ω ²
Putting the values
6 x 10⁵ g = 1.8 cm x ω ²
Converting 1.8 cm to 0.018 m, also g = 9.8 ms⁻²
6 x 10⁵ x 9.8 = 0.018 x ω ²
ω ² = (6 x 10⁵ x 9.8) / 0.018
ω ² = 5880000 / 0.018
ω ² = 326666667
ω = 18074 rad/sec