"The equation can be used to calculate the power absorbed by any surface" statement concerning the Stefan-Boltzmann equation is correct.
Answer: Option A
<u>Explanation:</u>
According to Stefan Boltzmann equation, the power radiated by black body radiation source is directly proportionate to the fourth power of temperature of the source. So the radiation transferred is absorbed by another surface and that absorbed power will also be equal to the fourth power of the temperature. So the equation describes the relation of net radiation loss with the change in temperature from hotter temperature to cooler temperature surface.

So this law is application for calculating power absorbed by any surface.
Answer:
K = 0.076 J
Explanation:
The height of the target, h = 0.860 m
The mass of the steel ball, m = 0.0120 kg
Distance moved, d = 1.50 m
We need to find the kinetic energy (in joules) of the target ball just after it is struck. Let t is the time taken by the ball to reach the ground.

Put all the values,

The velocity of the ball is :

The kinetic energy of the ball is :

So, the required kinetic energy is 0.076 J.
The velocity is (3,000/5) = 600 miles per hour west .
According to the inverse square law of light, <span>apparent brightness will decrease by a factor of 9. Use the formula </span>

, to check it.
Average speed = total distance / total time.
That's 172 km / 5 hr = 34.4 km//hr