Yep. he discovered that coastline from south america and africa fit together like a puzzle, which later became a part of the continential drift theory
Answer:
Kinetic Energy.
Explanation:
The movement of a roller coaster is accomplished by the conversion of potential energy to kinetic energy. The roller coaster cars gain potential energy as they are pulled to the top of the first hill. As the cars descend the potential energy is converted to kinetic energy.
Answer:
P.E. = -0.449 J
Explanation:
Potential energy of a charge particle in any electrostatic field is defined as the amount of work done ( in negative ) to bring that charge particle from any position to a new position r.
Now Potential energy is defined by this formula,
P.E. = k q₁ q₂/ r
where P.E. is the potential energy.
k = 1/( 4πε₀) = 8.99 × 10⁹ C²/ ( Nm²)
q₁ = charge of one particle = +1.0μC
q₂ = charge of another particle = -5.0μC
r = distance = 0.1 m
Now , P.E. = 8.99 × 10⁹C²/ ( Nm²) * ( -5.0 × 10⁻⁶ C ) × ( 1 × 10⁻⁶ C ) / 0.1 m
P.E. = -0.449 J
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Because it's the basis of how everything around you works