Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
Answer:
t = 2.01 s
Vf = 19.7 m/s
Explanation:
It's know through the International System that the earth's gravity is 9.8 m/s², then we have;
Data:
- Height (h) = 20 m
- Gravity (g) = 9.8 m/s²
- Time (t) = ?
- Final Velocity (Vf) = ?
==================================================================
Time
Use formula:
Replace:
Everything inside the root is solved first. So, we solve the multiplication of the numerator:
It divides:
The square root is performed:
==================================================================
Final Velocity
use formula:
Replace:
Multiply:
==================================================================
How long does it take to reach the ground?
Takes time to reach the ground in <u>2.01 seconds.</u>
How fast does it hit the ground?
Hits the ground with a speed of <u>19.7 meters per seconds.</u>
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km