1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sleet_krkn [62]
3 years ago
10

How long will it take for an object to hit the ground when dropped from a height of 7m?

Physics
1 answer:
White raven [17]3 years ago
3 0

Answer:

Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s.

Explanation:

mark me as the brainliest please

You might be interested in
Why is the electromagnetic spectrum called a spectrum?
Doss [256]

Answer & Explanation:

Scientists call them all electromagnetic radiation. The waves of energy are called electromagnetic (EM) because they have oscillating electric and magnetic fields. Scientists classify them by their frequency or wavelength, going from high to low frequency (short to long wavelength).

6 0
3 years ago
Interactive Solution 11.13 presents a model for solving this problem. A solid concrete block weighs 100 N and is resting on the
mash [69]

Answer:

The value is }  N  =  66 \  blocks

Explanation:

From the question we are told that

The weight of the block is W_b  = 100 \  N

The dimension of the block is d =  0.400 m  \ X  \ 0.250 \  m  \  X  \ 0.130 \ m

Generally two atmosphere is equivalent to

P_{2atm} =  2 *  1.013 *10^{5} =  202600 \  N/m^2

Generally 1 atm = 1.013 *10^{5} N/m^2

The area of the block would be evaluated using width and height because we need for the smaller surface to be in contact with the ground in order to maximize the pressure and minimize number of blocks

So

A =  0.250 *  0.130

=> A =  0.0325 \  m^2

Generally the force due to this blocks is mathematically represented as

F =  N  *  W_b

Here N is the number of blocks

So

}  202600 =  \frac{N  *  100 }{ 0.0325}

=>   }  N  =  66 \  blocks

3 0
3 years ago
A 5kg bag falls a verticle height of 10m before hitting the ground.
g100num [7]

Answer:

u = 7m {s}^{ - 1}

Explanation:

We know that when we don't have air friction on a free fall the mechanical energy (I will symbololize it with ME) is equal everywhere. So we have:

me(1) = me(2)

where me(1) is mechanical energy while on h=10m

and me(2) is mechanical energy while on the ground

Ek(1) + DynamicE(1) = Ek(2) + DynamicE(2)

Ek(1) is equal to zero since an object that has reached its max height has a speed equal to zero.

DynamicE(2) is equal to zero since it's touching the ground

Using that info we have

m \times g \times h   =   \frac{1}{2}  \times m \times u {}^{2} \\

we divide both sides of the equation with mass to make the math easier.

9.8 \times 10 =  \frac{1}{2}  \times u {}^{2}  \\  \frac{98}{2}  = u {}^{2}  \\ u { }^{2} = 49 \\ u = 7

7 0
3 years ago
How do you calculate the total resistance of a series circuit
CaHeK987 [17]
Add all the resistances across the circuit together the calculate the total resistance
5 0
3 years ago
At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coeffi
Flura [38]

The given data is incomplete. The complete question is as follows.

At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coefficient of friction was estimated to be 0.36.  Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (why does the car's mass not matter?)

Explanation:

Let us assume that v is the final velocity and u is the initial velocity of the car. Let s be the skid marks and \mu be the friction coefficient and m be the mass of car.

Hence, the given data is as follows.

                v = 0,     s = 84 m,     \mu = 0.36

According to Newton's law of second motion the expression for acceleration is as follows.

                      F = ma

                 -\mu N = ma

                 -\mu mg = ma

                      a = -\mu g

Also,    

               v^{2} = u^{2} + 2as

              (0)^{2} = u^{2} + 2(-\mu g)s

                  u^{2} = 2(\mu g)s

                            = \sqrt{2(0.36)(9.81 m/s^{2})(84 m)}

                            = 24.36 m/s

Thus, we can conclude that the speed of the car when the driver slammed on (and locked) the brakes is 24.36 m/s.

4 0
3 years ago
Other questions:
  • A 3000 n force acts on a 200 kg object what is the acceleration of the object
    5·2 answers
  • If you throw two bowling balls up, each with different mass, does the lightest one go the highest? Why(include the factor of dra
    7·1 answer
  • What are similarities and differences between refraction, reflection, diffraction and absorption?
    15·1 answer
  • A car traveling 75 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." calculate (a) the distance the car c
    11·1 answer
  • Help!!! Pleaaaaaseee SOS!!
    14·1 answer
  • PLZ HELP!!WILL MARK THE BRAINLIEST!!The diagram shows a chromosome pair for an offspring.Which best describes the inheritance of
    13·2 answers
  • A trapeze artist swings in simple harmonic motion with a period of 3.8 s.
    11·1 answer
  • If a Man suit a spare at a place where
    11·1 answer
  • A charge of +3.5 nC and a charge of +5.0 nC are separated by 40 cm. Find the equilibrium position for a -6.0 nC charge.
    10·2 answers
  • A rocket that has a mass of 4000 lbm travels at 27,000 ft/sec. What is most nearly its kinetic energy
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!