<span>The question says,'Mathew was working with different concentrations of hydrochloric acid in the lab. Which of these would best describe the resulsts Mathew would see if he was using a conductivity apparatus in each of the different acid concentration. The correct answer is C. This is because, acids conduct electricity, the stronger the acid, the brighter the electricity that will be produced while the weaker the acid, the weaker the electricity that will be produced. Thus, higher concentration equals tronger electricity.</span>
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.
Answer:
b. 3.66x10²³ atoms of chromium.
Explanation:
First we calculate how many moles are there in 31 grams of chromium, using its molar mass:
- Molar Mass of Chromium = 51 g/mol (This can be found on any periodic table)
- 31 g ÷ 51 g/mol = 0.608 mol
Then we <u>calculate how many atoms are there in 0.608 moles</u>, using <em>Avogadro's number</em>:
- 0.608 mol * 6.023x10²³ atoms/mol = 3.66x10²³ atoms
The correct answer is thus option b. 3.66x10²³ atoms of chromium.