Answer:
mass = 9.7 kg
Explanation:
Weight = Mass x Acceleration due to gravity (g)
16.5 = mass x 1.7
mass =
= 9.7 kg
The velocity of the ball when it was caught is 12.52 m/s.
<em>"Your question is not complete it seems to be missing the following, information"</em>,
find the velocity of the ball when it was caught.
The given parameters;
maximum height above the ground reached by the ball, H = 38 m
height above the ground where the ball was caught, h = 30 m
The height traveled by the ball when it was caught is calculated as follows;
y = H - h
y = 38 - 30 = 8 m
The velocity of the ball when it was caught is calculated as;

Thus, the velocity of the ball when it was caught is 12.52 m/s.
Learn more here: brainly.com/question/14582703
Explanation:
sinces : Momentum = velocity × mass
then : 30 = 10 × m and m = 30 ÷ 10 = 3 kg
Answer:
0.0000109261200583 s
0.0109261200583
Explanation:
= Distance from right ear = 3 m
s = Distance between ears = 15 cm
v = Speed of sound in air = 343 m/s
Distance between the left ear and the bird

Time

Time difference would be

The time difference is 0.0000109261200583 s
Time period is given by

The ratio is

The ratio is 0.0109261200583
Answer:
19.68 × 10⁻³ m
Explanation:
Given;
Original Length, L₁ = 41.0 m
Temperature Change, ΔT = 40.0°C
Thermal Linear expansion of steel is given to be, ∝
= 12 × 10⁻⁶ /°C
Generally, Linear expansivity is expressed as;
∝ = ΔL / L₁ΔT
Where
∝ is the Linear expansivity
ΔL is the change in length, L₂ - L₁
L₂ is the final length
L₁ is the original length
ΔT is the change in temperature θ₂ - θ₁ (Final Temperature - Initial Temperature)
From equation of linear expansivity
ΔL = ∝
L₁ΔT
ΔL = 12 × 10⁻⁶ /°C × 41.0 m × 40.0 °C
ΔL = 19.68 × 10⁻³ m
ΔL = 19.68 mm