S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m
Answer:
B) x^2+6x+8
Explanation:
x-4 | x^3+2x^2-16x-32
- x^3-4x^2 <-- (x-4)(x^2)
_________________
6x^2-16x-32
- 6x^2-24x <-- (x-4)(6x)
_________________
8x-32
- 8x-32 <- (x-4)(8)
___________________________
0 | x^2+6x+8
This means the answer is B) x^2+6x+8
Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W
Answer:
0.12 K
Explanation:
height, h = 51 m
let the mass of water is m.
Specific heat of water, c = 4190 J/kg K
According to the transformation of energy
Potential energy of water = thermal energy of water
m x g x h = m x c x ΔT
Where, ΔT is the rise in temperature
g x h = c x ΔT
9.8 x 51 = 4190 x ΔT
ΔT = 0.12 K
Thus, the rise in temperature is 0.12 K.