Answer:
The average pressure in the container due to these 75 gas molecules is 
Explanation:
Here Pressure in a container is given as

Here
- P is the pressure which is to be calculated
- ρ is the density of the gas which is to be calculated as below

Here
mass is to be calculated for 75 gas phase molecules as

Volume of container is 0.5 lts
So density is given as

is the mean squared velocity which is given as

Here RMS is the Root Mean Square speed given as 605 m/s so

Substituting the values in the equation and solving

So the average pressure in the container due to these 75 gas molecules is 
Answer:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly colored gas.
<h3>

</h3><h3>

</h3><h3>

</h3><h3>

</h3>
<em>Hence</em><em>,</em><em> </em><em>84</em><em>°</em><em>F</em><em> </em><em>is</em><em> </em><em>30</em><em>°</em><em>C</em><em> </em><em>in</em><em> </em><em>Celsius</em><em>.</em><em>.</em>
Answer:
0.456 M
Explanation:
Step 1: Write the balanced neutralization equation
HNO₂ + KOH ⇒ KNO₂ + H₂O
Step 2: Calculate the reacting moles of KOH
9.26 mL of 1.235 M KOH react.
0.00926 L × 1.235 mol/L = 0.0114 mol
Step 3: Calculate the reacting moles of HNO₂
The molar ratio of HNO₂ to KOH is 1:1. The reacting moles of HNO₂ are 1/1 × 0.0114 mol = 0.0114 mol.
Step 4: Calculate the initial concentration of HNO₂
0.0114 moles of HNO₂ are in 25.0 mL of solution.
[HNO₂] = 0.0114 mol / 0.0250 L = 0.456 M
The atmosphere is considered homogeneous. It isn’t exactly on the smallest scales but that doesn’t matter. Homogenous means the composition will be the same in any sample taken from the substance. And clearly, the atmosphere is mostly gas. So the last answer is right